Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 16, 2025
-
ABSTRACT The mass assembly history (MAH) of dark matter haloes plays a crucial role in shaping the formation and evolution of galaxies. MAHs are used extensively in semi-analytic and empirical models of galaxy formation, yet current analytic methods to generate them are inaccurate and unable to capture their relationship with the halo internal structure and large-scale environment. This paper introduces florah (FLOw-based Recurrent model for Assembly Histories), a machine-learning framework for generating assembly histories of ensembles of dark matter haloes. We train florah on the assembly histories from the Gadget at Ultra-high Redshift with Extra Fine Time-steps and vsmdplN-body simulations and demonstrate its ability to recover key properties such as the time evolution of mass and concentration. We obtain similar results for the galaxy stellar mass versus halo mass relation and its residuals when we run the Santa Cruz semi-analytic model on florah-generated assembly histories and halo formation histories extracted from an N-body simulation. We further show that florah also reproduces the dependence of clustering on properties other than mass (assembly bias), which is not captured by other analytic methods. By combining multiple networks trained on a suite of simulations with different redshift ranges and mass resolutions, we are able to construct accurate main progenitor branches with a wide dynamic mass range from $z=0$ up to an ultra-high redshift $$z \approx 20$$, currently far beyond that of a single N-body simulation. florah is the first step towards a machine learning-based framework for planting full merger trees; this will enable the exploration of different galaxy formation scenarios with great computational efficiency at unprecedented accuracy.more » « less
-
Abstract Neutron stars provide a unique opportunity to study strongly interacting matter under extreme density conditions. The intricacies of matter inside neutron stars and their equation of state are not directly visible, but determine bulk properties, such as mass and radius, which affect the star's thermal X-ray emissions. However, the telescope spectra of these emissions are also affected by the stellar distance, hydrogen column, and effective surface temperature, which are not always well-constrained. Uncertainties on these nuisance parameters must be accounted for when making a robust estimation of the equation of state. In this study, we develop a novel methodology that, for the first time, can infer the full posterior distribution of both the equation of state and nuisance parameters directly from telescope observations. This method relies on the use of neural likelihood estimation, in which normalizing flows use samples of simulated telescope data to learn the likelihood of the neutron star spectra as a function of these parameters, coupled with Hamiltonian Monte Carlo methods to efficiently sample from the corresponding posterior distribution. Our approach surpasses the accuracy of previous methods, improves the interpretability of the results by providing access to the full posterior distribution, and naturally scales to a growing number of neutron star observations expected in the coming years.more » « less
-
This paper presents the Learning the Universe Implicit Likelihood Inference (LtU-ILI) pipeline, a codebase for rapid, user-friendly, and cutting-edge machine learning (ML) inference in astrophysics and cosmology. The pipeline includes software for implementing various neural architectures, training schema, priors, and density estimators in a manner easily adaptable to any research workflow. It includes comprehensive validation metrics to assess posterior estimate coverage, enhancing the reliability of inferred results. Additionally, the pipeline is easily parallelizable, designed for efficient exploration of modeling hyperparameters. To demonstrate its capabilities, we present real applications across a range of astrophysics and cosmology problems, such as: estimating galaxy cluster masses from X-ray photometry; inferring cosmology from matter power spectra and halo point clouds; characterising progenitors in gravitational wave signals; capturing physical dust parameters from galaxy colors and luminosities; and establishing properties of semi-analytic models of galaxy formation. We also include exhaustive benchmarking and comparisons of all implemented methods as well as discussions about the challenges and pitfalls of ML inference in astronomical sciences. All code and examples are made publicly available at https://github.com/maho3/ltu-ili.more » « less
-
ABSTRACT We investigate the range of applicability of a model for the real-space power spectrum based on N-body dynamics and a (quadratic) Lagrangian bias expansion. This combination uses the highly accurate particle displacements that can be efficiently achieved by modern N-body methods with a symmetries-based bias expansion which describes the clustering of any tracer on large scales. We show that at low redshifts, and for moderately biased tracers, the substitution of N-body-determined dynamics improves over an equivalent model using perturbation theory by more than a factor of two in scale, while at high redshifts and for highly biased tracers the gains are more modest. This hybrid approach lends itself well to emulation. By removing the need to identify haloes and subhaloes, and by not requiring any galaxy-formation-related parameters to be included, the emulation task is significantly simplified at the cost of modelling a more limited range in scale.more » « less
An official website of the United States government
