skip to main content


Search for: All records

Creators/Authors contains: "Mohammadisiahroudi, Mohammadhossein"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The numerical performance of algorithms can be studied using test sets or procedures that generate such problems. This paper proposes various methods for generating linear, semidefinite, and secondorder cone optimization problems. Specifically, we are interested in problem instances requiring a known optimal solution, a known optimal partition, a specific interior solution, or all these together. In the proposed problem generators, different characteristics of optimization problems, including dimension, size, condition number, degeneracy, optimal partition, and sparsity, can be chosen to facilitate comprehensive computational experiments. We also develop procedures to generate instances with a maximally complementary optimal solution with a predetermined optimal partition to generate challenging semidefinite and second-order cone optimization problems. Generated instances enable us to evaluate efficient interior-point methods for conic optimization problems. 
    more » « less
    Free, publicly-accessible full text available July 5, 2025
  2. Quantum linear system algorithms (QLSAs) have the potential to speed up algorithms that rely on solving linear systems. Interior point methods (IPMs) yield a fundamental family of polynomial-time algorithms for solving optimization problems. IPMs solve a Newton linear system at each iteration to compute the search direction; thus, QLSAs can potentially speed up IPMs. Due to the noise in contemporary quantum computers, quantum-assisted IPMs (QIPMs) only admit an inexact solution to the Newton linear system. Typically, an inexact search direction leads to an infeasible solution, so, to overcome this, we propose an inexact-feasible QIPM (IF-QIPM) for solving linearly constrained quadratic optimization problems. We also apply the algorithm to ℓ1-norm soft margin support vector machine (SVM) problems, and demonstrate that our algorithm enjoys a speedup in the dimension over existing approaches. This complexity bound is better than any existing classical or quantum algorithm that produces a classical solution. 
    more » « less