skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Mohanty, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Amsaad, F; Abdelgawad, A; Jamil, A (Ed.)
    Fault Injection attack is a type of side-channel attack on the Physical Unclonable Function (PUF) module that can induce faults in the PUF response by manipulating the PUF circuit behavior through voltage glitches, laser attacks, temperature manipulations, or any other attacks potentially leading to information loss or security system failure. This type of attack exposes the physical characteristics of PUFs that can be analyzed to predict or compromise the unique challenge response pairs (CRPs) reducing the security and reliability of the PUF. Mitigation strategies against such attacks typically include adding noise to the PUF output, using error-correcting codes, or enhanced cryptographic protocols that obscure physical side-channel attacks. In this research, we propose a Generative Adversarial Network (GAN) based security model, that monitors the PUF behavior and detects the variations in PUF response. The model can detect glitches in the PUF response and generate alerts to take mitigation measures. 
    more » « less
    Free, publicly-accessible full text available February 25, 2026
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)