skip to main content

Search for: All records

Creators/Authors contains: "Mohr, J. J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We provide the first combined cosmological analysis of the South Pole Telescope (SPT) and Planck cluster catalogs. The aim is to provide an independent calibration for Planck scaling relations, exploiting the cosmological constraining power of the SPT-SZ cluster catalog and its dedicated weak lensing (WL) and X-ray follow-up observations. We build a new version of the Planck cluster likelihood. In the ν Λ CDM scenario, focusing on the mass slope and mass bias of Planck scaling relations, we find α SZ = 1.49 − 0.10 + 0.07 and 1 − b SZ = 0.69 − 0.14 + 0.07 , respectively. The results for the mass slope show a ∼4 σ departure from the self-similar evolution, α SZ ∼ 1.8. This shift is mainly driven by the matter density value preferred by SPT data, Ω m = 0.30 ± 0.03, lower than the one obtained by Planck data alone, Ω m = 0.37 − 0.06 + 0.02 . The mass bias constraints are consistent both with outcomes of hydrodynamical simulations and external WL calibrations, (1 − b ) ∼ 0.8, and with results required by the Planck cosmic microwave background cosmology, (1 − b ) ∼ 0.6. From this analysis,more »we obtain a new catalog of Planck cluster masses M 500 . We estimate the ratio between the published Planck M SZ masses and our derived masses M 500 , as a “measured mass bias,” 1 − b M . We analyze the mass, redshift, and detection noise dependence of 1 − b M , finding an increasing trend toward high redshift and low mass. These results mimic the effect of departure from self-similarity in cluster evolution, showing different dependencies for the low-mass, high-mass, low- z , and high- z regimes.« less
    Free, publicly-accessible full text available August 1, 2023
  2. Abstract We show the improvement to cosmological constraints from galaxy cluster surveys with the addition of cosmic microwave background (CMB)-cluster lensing data. We explore the cosmological implications of adding mass information from the 3.1 σ detection of gravitational lensing of the CMB by galaxy clusters to the Sunyaev–Zel’dovich (SZ) selected galaxy cluster sample from the 2500 deg 2 SPT-SZ survey and targeted optical and X-ray follow-up data. In the ΛCDM model, the combination of the cluster sample with the Planck power spectrum measurements prefers σ 8 Ω m / 0.3 0.5 = 0.831 ± 0.020 . Adding the cluster data reduces the uncertainty on this quantity by a factor of 1.4, which is unchanged whether the 3.1 σ CMB-cluster lensing measurement is included or not. We then forecast the impact of CMB-cluster lensing measurements with future cluster catalogs. Adding CMB-cluster lensing measurements to the SZ cluster catalog of the ongoing SPT-3G survey is expected to improve the expected constraint on the dark energy equation of state w by a factor of 1.3 to σ ( w ) = 0.19. We find the largest improvements from CMB-cluster lensing measurements to be for σ 8 , where adding CMB-cluster lensing data tomore »the cluster number counts reduces the expected uncertainty on σ 8 by respective factors of 2.4 and 3.6 for SPT-3G and CMB-S4.« less
    Free, publicly-accessible full text available June 1, 2023
  3. ABSTRACT

    We search for the signature of cosmological shocks in stacked gas pressure profiles of galaxy clusters using data from the South Pole Telescope (SPT). Specifically, we stack the latest Compton-y maps from the 2500 deg2 SPT-SZ survey on the locations of clusters identified in that same data set. The sample contains 516 clusters with mean mass $\langle M_{\rm 200m}\rangle = 10^{14.9} \, {\rm M}_\odot$ and redshift 〈z〉 = 0.55. We analyse in parallel a set of zoom-in hydrodynamical simulations from the three hundred project. The SPT-SZ data show two features: (i) a pressure deficit at R/R200m = 1.08 ± 0.09, measured at 3.1σ significance and not observed in the simulations, and; (ii) a sharp decrease in pressure at R/R200m = 4.58 ± 1.24 at 2.0σ significance. The pressure deficit is qualitatively consistent with a shock-induced thermal non-equilibrium between electrons and ions, and the second feature is consistent with accretion shocks seen in previous studies. We split the cluster sample by redshift and mass, and find both features exist in all cases. There are also no significant differences in features along and across the cluster major axis, whose orientation roughly points towards filamentary structure. As a consistency test, we also analyse clusters from the Planck and Atacama Cosmologymore »Telescope Polarimeter surveys and find quantitatively similar features in the pressure profiles. Finally, we compare the accretion shock radius ($R_{\rm sh,\, acc}$) with existing measurements of the splashback radius (Rsp) for SPT-SZ and constrain the lower limit of the ratio, $R_{\rm sh,\, acc}/R_{\rm sp}\gt 2.16 \pm 0.59$.

    « less
  4. Abstract

    We present component-separated maps of the primary cosmic microwave background/kinematic Sunyaev–Zel’dovich (SZ) amplitude and the thermal SZ Compton-yparameter, created using data from the South Pole Telescope (SPT) and the Planck satellite. These maps, which cover the ∼2500 deg2of the southern sky imaged by the SPT-SZ survey, represent a significant improvement over previous such products available in this region by virtue of their higher angular resolution (1.′25for our highest-resolution Compton-ymaps) and lower noise at small angular scales. In this work we detail the construction of these maps using linear combination techniques, including our method for limiting the correlation of our lowest-noise Compton-ymap products with the cosmic infrared background. We perform a range of validation tests on these data products to test our sky modeling and combination algorithms, and we find good performance in all of these tests. Recognizing the potential utility of these data products for a wide range of astrophysical and cosmological analyses, including studies of the gas properties of galaxies, groups, and clusters, we make these products publicly available athttp://pole.uchicago.edu/public/data/sptsz_ymapand on the NASA/LAMBDA website.

  5. Free, publicly-accessible full text available May 1, 2023
  6. Abstract We present the results of an analysis of Wide-field Infrared Survey Explorer (WISE) observations of the full 2500 deg 2 South Pole Telescope (SPT)-Sunyaev–Zel’dovich cluster sample. We describe a process for identifying active galactic nuclei (AGN) in brightest cluster galaxies (BCGs) based on WISE mid-IR color and redshift. Applying this technique to the BCGs of the SPT-SZ sample, we calculate the AGN-hosting BCG fraction, which is defined as the fraction of BCGs hosting bright central AGNs over all possible BCGs. Assuming an evolving single-burst stellar population model, we find statistically significant evidence (>99.9%) for a mid-IR excess at high redshift compared to low redshift, suggesting that the fraction of AGN-hosting BCGs increases with redshift over the range of 0 < z < 1.3. The best-fit redshift trend of the AGN-hosting BCG fraction has the form (1 + z ) 4.1±1.0 . These results are consistent with previous studies in galaxy clusters as well as as in field galaxies. One way to explain this result is that member galaxies at high redshift tend to have more cold gas. While BCGs in nearby galaxy clusters grow mostly by dry mergers with cluster members, leading to no increase in AGN activity, BCGsmore »at high redshift could primarily merge with gas-rich satellites, providing fuel for feeding AGNs. If this observed increase in AGN activity is linked to gas-rich mergers rather than ICM cooling, we would expect to see an increase in scatter in the P cav versus L cool relation at z > 1. Last, this work confirms that the runaway cooling phase, as predicted by the classical cooling-flow model, in the Phoenix cluster is extremely rare and most BCGs have low (relative to Eddington) black hole accretion rates.« less
    Free, publicly-accessible full text available March 3, 2023
  7. Abstract We present the second public data release (DR2) from the DECam Local Volume Exploration survey (DELVE). DELVE DR2 combines new DECam observations with archival DECam data from the Dark Energy Survey, the DECam Legacy Survey, and other DECam community programs. DELVE DR2 consists of ∼160,000 exposures that cover >21,000 deg 2 of the high-Galactic-latitude (∣ b ∣ > 10°) sky in four broadband optical/near-infrared filters ( g , r , i , z ). DELVE DR2 provides point-source and automatic aperture photometry for ∼2.5 billion astronomical sources with a median 5 σ point-source depth of g = 24.3, r = 23.9, i = 23.5, and z = 22.8 mag. A region of ∼17,000 deg 2 has been imaged in all four filters, providing four-band photometric measurements for ∼618 million astronomical sources. DELVE DR2 covers more than 4 times the area of the previous DELVE data release and contains roughly 5 times as many astronomical objects. DELVE DR2 is publicly available via the NOIRLab Astro Data Lab science platform.
    Free, publicly-accessible full text available August 1, 2023
  8. Abstract

    We use a recent census of the Milky Way (MW) satellite galaxy population to constrain the lifetime of particle dark matter (DM). We consider two-body decaying dark matter (DDM) in which a heavy DM particle decays with lifetimeτcomparable to the age of the universe to a lighter DM particle (with mass splittingϵ) and to a dark radiation species. These decays impart a characteristic “kick velocity,”Vkick=ϵc, on the DM daughter particles, significantly depleting the DM content of low-mass subhalos and making them more susceptible to tidal disruption. We fit the suppression of the present-day DDM subhalo mass function (SHMF) as a function ofτandVkickusing a suite of high-resolution zoom-in simulations of MW-mass halos, and we validate this model on new DDM simulations of systems specifically chosen to resemble the MW. We implement our DDM SHMF predictions in a forward model that incorporates inhomogeneities in the spatial distribution and detectability of MW satellites and uncertainties in the mapping between galaxies and DM halos, the properties of the MW system, and the disruption of subhalos by the MW disk using an empirical model for the galaxy–halo connection. By comparing to the observed MW satellite population, we conservatively exclude DDM models withτ< 18 Gyrmore »(29 Gyr) forVkick= 20 kms−1(40 kms−1) at 95% confidence. These constraints are among the most stringent and robust small-scale structure limits on the DM particle lifetime and strongly disfavor DDM models that have been proposed to alleviate the Hubble andS8tensions.

    « less
  9. Free, publicly-accessible full text available June 1, 2023
  10. Free, publicly-accessible full text available June 1, 2023