skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 15 until 2:00 AM ET on Saturday, November 16 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Moinak Ghoshal, Z. Jonny"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The highly anticipated 5G mmWave technology promises to enable many uplink-oriented, latency-critical applications (LCAs) such as Augmented Reality and Connected Autonomous Vehicles. Nonetheless, recent measurement studies have largely focused on its downlink performance. In thiswork,we perform a systematic study of the uplink performance of commercial 5G mmWave networks across 3 major US cities and 2 mobile operators. Our study makes three contributions. (1) It reveals that 5G mmWave uplink performance is geographically diverse, substantially higher over LTE in terms of bandwidth and latency, but often erratic and suboptimal, which can degrade LCA performance. (2) Our analysis of control messages and PHY-level KPIs shows that the root causes for the suboptimal performance are fundamental to 5G mmWave and cannot be easily fixed via simple tuning of network configurations. (3) We identify various design and deployment optimizations that 5G operators can explore to bring 5G mmWave performance to the level needed to ultimately support the LCAs. 
    more » « less