skip to main content

Search for: All records

Creators/Authors contains: "Mok, Angus"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT When completed, the PHANGS–HST project will provide a census of roughly 50 000 compact star clusters and associations, as well as human morphological classifications for roughly 20 000 of those objects. These large numbers motivated the development of a more objective and repeatable method to help perform source classifications. In this paper, we consider the results for five PHANGS–HST galaxies (NGC 628, NGC 1433, NGC 1566, NGC 3351, NGC 3627) using classifications from two convolutional neural network architectures (RESNET and VGG) trained using deep transfer learning techniques. The results are compared to classifications performed by humans. The primary result is that the neural network classifications are comparable in quality to the human classifications with typical agreement around 70 to 80 per cent for Class 1 clusters (symmetric, centrally concentrated) and 40 to 70 per cent for Class 2 clusters (asymmetric, centrally concentrated). If Class 1 and 2 are considered together the agreement is 82 ± 3 per cent. Dependencies on magnitudes, crowding, and background surface brightness are examined. A detailed description of the criteria and methodology used for the human classifications is included along with an examination of systematic differences between PHANGS–HST and LEGUS. The distribution of data points in a colour–colour diagram is used as a ‘figure ofmore »merit’ to further test the relative performances of the different methods. The effects on science results (e.g. determinations of mass and age functions) of using different cluster classification methods are examined and found to be minimal.« less
  2. ABSTRACT We present improved methods for segmenting CO emission from galaxies into individual molecular clouds, providing an update to the cprops algorithms presented by Rosolowsky & Leroy. The new code enables both homogenization of the noise and spatial resolution among data, which allows for rigorous comparative analysis. The code also models the completeness of the data via false source injection and includes an updated segmentation approach to better deal with blended emission. These improved algorithms are implemented in a publicly available Python package, pycprops. We apply these methods to 10 of the nearest galaxies in the PHANGS-ALMA survey, cataloguing CO emission at a common 90 pc resolution and a matched noise level. We measure the properties of 4986 individual clouds identified in these targets. We investigate the scaling relations among cloud properties and the cloud mass distributions in each galaxy. The physical properties of clouds vary among galaxies, both as a function of galactocentric radius and as a function of dynamical environment. Overall, the clouds in our target galaxies are well-described by approximate energy equipartition, although clouds in stellar bars and galaxy centres show elevated line widths and virial parameters. The mass distribution of clouds in spiral arms has a typical massmore »scale that is 2.5× larger than interarm clouds and spiral arms clouds show slightly lower median virial parameters compared to interarm clouds (1.2 versus 1.4).« less