skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 15 until 2:00 AM ET on Saturday, November 16 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Mokalled, Stefani C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. e. With recent advances in online sensing technology and high-performance computing, structural health monitoring (SHM) has begun to emerge as an automated approach to the real-time conditional monitoring of civil infrastructure. Ideal SHM strategies detect and characterize damage by leveraging measured response data to update physics-based finite element models (FEMs). When monitoring composite structures, such as reinforced concrete (RC) bridges, the reliability of FEM based SHM is adversely affected by material, boundary, geometric, and other model uncertainties. Civil engineering researchers have adapted popular artificial intelligence (AI) techniques to overcome these limitations, as AI has an innate ability to solve complex and ill-defined problems by leveraging advanced machine learning techniques to rapidly analyze experimental data. In this vein, this study employs a novel Bayesian estimation technique to update a coupled vehicle-bridge FEM for the purposes of SHM. Unlike existing AI based techniques, the proposed approach makes intelligent use of an embedded FEM model, thus reducing the parameter space while simultaneously guiding the Bayesian model via physics-based principles. To validate the method, bridge response data is generated from the vehicle-bridge FEM given a set of “true” parameters and the bias and standard deviation of the parameter estimates are analyzed. Additionally, the mean parameter estimates are used to solve the FEM model and the results are compared against the results obtained for “true” parameter values. A sensitivity study is also conducted to demonstrate methods for properly formulating model spaces to improve the Bayesian estimation routine. The study concludes with a discussion highlighting factors that need to be considered when leveraging experimental data to update FEMs of concrete structures using AI techniques. 
    more » « less
  2. When screening for infectious diseases, group testing has proven to be a cost efficient alternative to individual level testing. Cost savings are realized by testing pools of individual specimens (eg, blood, urine, saliva, and so on) rather than by testing the specimens separately. However, a common concern that arises in group testing is the so‐called “dilution effect.” This occurs if the signal from a positive individual's specimen is diluted past an assay's threshold of detection when it is pooled with multiple negative specimens. In this article, we propose a new statistical framework for group testing data that merges estimation and case identification, which are often treated separately in the literature. Our approach considers analyzing continuous biomarker levels (eg, antibody levels, antigen concentrations, and so on) from pooled samples to estimate both a binary regression model for the probability of disease and the biomarker distributions for cases and controls. To increase case identification accuracy, we then show how estimates of the biomarker distributions can be used to select diagnostic thresholds on a pool‐by‐pool basis. Our proposals are evaluated through numerical studies and are illustrated using hepatitis B virus data collected on a prison population in Ireland.

     
    more » « less