skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Momeni, Mohammad_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Developing efficient path integral (PI) methods for atomistic simulations of vibrational spectra in heterogeneous condensed phases and interfaces has long been a challenging task. Here, we present the h-CMD method, short for hybrid centroid molecular dynamics, which combines the recently introduced fast quasi-CMD (f-QCMD) method with fast CMD (f-CMD). In this scheme, molecules that are believed to suffer more seriously from the curvature problem of CMD, e.g., water, are treated with f-QCMD, while the rest, e.g., solid surfaces, are treated with f-CMD. To test the accuracy of the newly introduced scheme, the infrared spectra of the interfacial D2O confined in the archetypal ZIF-90 framework are simulated using h-CMD compared to a variety of other PI methods, including thermostatted ring-polymer molecular dynamics (T-RPMD) and partially adiabatic CMD as well as f-CMD and experiment as reference. Comparisons are also made with classical MD, where nuclear quantum effects are neglected entirely. Our detailed comparisons at different temperatures of 250–600 K show that h-CMD produces O–D stretches that are in close agreement with the experiment, correcting the known curvature problem and redshifting of the stretch peaks of CMD. h-CMD also corrects the known issues associated with too artificially dampened and broadened spectra of T-RPMD, which leads to missing the characteristic doublet feature of the interfacial confined water, rendering it unsuitable for these systems. The new h-CMD method broadens the applicability of f-QCMD to heterogeneous condensed phases and interfaces, where defining curvilinear coordinates for the entire system is not feasible. 
    more » « less