Apicomplexa are ancient and diverse organisms which have been poorly characterized by modern genomics. To better understand the evolution and diversity of these single-celled eukaryotes, we sequenced the genome of
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Ophryocystis elektroscirrha , a parasite of monarch butterflies,Danaus plexippus . We contextualize our newly generated resources within apicomplexan genomics before answering longstanding questions specific to this host-parasite system. To start, the genome is miniscule, totaling only 9 million bases and containing fewer than 3,000 genes, half the gene content of two other sequenced invertebrate-infecting apicomplexans,Porospora gigantea andGregarina niphandrodes . We found thatO. elektroscirrha shares different orthologs with each sequenced relative, suggesting the true set of universally conserved apicomplexan genes is very small indeed. Next, we show that sequencing data from other potential host butterflies can be used to diagnose infection status as well as to study diversity of parasite sequences. We recovered a similarly sized parasite genome from another butterfly,Danaus chrysippus , that was highly diverged from theO. elektroscirrha reference, possibly representing a distinct species. Using these two new genomes, we investigated potential evolutionary response by parasites to toxic phytochemicals their hosts ingest and sequester. Monarch butterflies are well-known to tolerate toxic cardenolides thanks to changes in the sequence of their Type II ATPase sodium pumps. We show thatOphryocystis completely lacks Type II or Type 4 sodium pumps, and related proteins PMCA calcium pumps show extreme sequence divergence compared to other Apicomplexa, demonstrating new avenues of research opened by genome sequencing of non-model Apicomplexa. -
Whitehead, A (Ed.)Abstract Many species that are extensively studied in the laboratory are less well characterized in their natural habitat, and laboratory strains represent only a small fraction of the variation in a species’ genome. Here we investigate genomic variation in 3 natural North American populations of an agricultural pest and a model insect for many scientific disciplines, the tobacco hornworm (Manduca sexta). We show that hornworms from Arizona, Kansas, and North Carolina are genetically distinct, with Arizona being particularly differentiated from the other 2 populations using Illumina whole-genome resequencing. Peaks of differentiation exist across the genome, but here, we focus in on the most striking regions. In particular, we identify 2 likely segregating inversions found in the Arizona population. One inversion on the Z chromosome may enhance adaptive evolution of the sex chromosome. The larger, 8 Mb inversion on chromosome 12 contains a pseudogene which may be involved in the exploitation of a novel hostplant in Arizona, but functional genetic assays will be required to support this hypothesis. Nevertheless, our results reveal undiscovered natural variation and provide useful genomic data for both pest management and evolutionary genetics of this insect species.more » « less
-
null (Ed.)Most people meet insects with fear and disgust but this reputation is largely unfounded, as few insects pose health risks. In fact, many are beneficial and their absence would adversely affect human life; thus insect conservation is important but unpopular. We have begun addressing these concerns as part of a broader effort to establish an ongoing outreach partnership between graduate students at the University of Kansas and the Girl Scouts of Northeast Kansas/Northwest Missouri. To explore ways to advocate for insect conservation, we held an insect collecting activity at a Girl Scout summer camp and surveyed changes in attitudes towards insects afterwards. This activity positively changed reactions to insect encounters and increased confidence in identifying harmful insects but did not strongly reduce fears or increase curiosity towards insects. Beyond these proximate results, this project highlights the potential of Girl Scout troops as targets for informal science education that can benefit both academics and the broader community.more » « less
-
null (Ed.)The rate of divergence for Z or X chromosomes is usually observed to be greater than autosomes, but the proposed evolutionary causes for this pattern vary, as do empirical results from diverse taxa. Even among moths and butterflies (Lepidoptera), which generally share a single-origin Z chromosome, the handful of available studies give mixed support for faster or more adaptive evolution of the Z chromosome, depending on the species assayed. Here, we examine the molecular evolution of Z chromosomes in two additional lepidopteran species: the Carolina sphinx moth and the monarch butterfly, the latter of which possesses a recent chromosomal fusion yielding a segment of newly Z-linked DNA. We find evidence for both faster and more adaptive Z chromosome evolution in both species, though this effect is strongest in the neo-Z portion of the monarch sex chromosome. The neo-Z is less male-biased than expected of a Z chromosome, and unbiased and female-biased genes drive the signal for adaptive evolution here. Together these results suggest that male-biased gene accumulation and haploid selection have opposing effects on long-term rates of adaptation and may help explain the discrepancies in previous findings as well as the repeated evolution of neo-sex chromosomes in Lepidoptera.more » « less
-
Abstract Spermatozoa are one of the most strikingly diverse animal cell types. One poorly understood example of this diversity is sperm heteromorphism, where males produce multiple distinct morphs of sperm in a single ejaculate. Typically, only one morph is capable of fertilization and the function of the nonfertilizing morph, called parasperm, remains to be elucidated. Sperm heteromorphism has multiple independent origins, including Lepidoptera (moths and butterflies), where males produce a fertilizing eupyrene sperm and an apyrene parasperm, which lacks a nucleus and nuclear DNA. Here we report a comparative proteomic analysis of eupyrene and apyrene sperm between two distantly related lepidopteran species, the monarch butterfly (Danaus plexippus) and Carolina sphinx moth (Manduca sexta). In both species, we identified ∼700 sperm proteins, with half present in both morphs and the majority of the remainder observed only in eupyrene sperm. Apyrene sperm thus have a distinctly less complex proteome. Gene ontology (GO) analysis revealed proteins shared between morphs tend to be associated with canonical sperm cell structures (e.g., flagellum) and metabolism (e.g., ATP production). GO terms for morph-specific proteins broadly reflect known structural differences, but also suggest a role for apyrene sperm in modulating female neurobiology. Comparative analysis indicates that proteins shared between morphs are most conserved between species as components of sperm, whereas morph-specific proteins turn over more quickly, especially in apyrene sperm. The rapid divergence of apyrene sperm content is consistent with a relaxation of selective constraints associated with fertilization and karyogamy. On the other hand, parasperm generally exhibit greater evolutionary lability, and our observations may therefore reflect adaptive responses to shifting regimes of sexual selection.more » « less
-
Abstract Humoral and cellular immune responses provide animals with major defences against harmful pathogens. While it is often assumed that immune genes undergo rapid diversifying selection, this assumption has not been tested in many species. Moreover, it is likely that different classes of immune genes experience different levels of evolutionary constraint, resulting in varying selection patterns. We examined the evolutionary patterns for a set of 91 canonical immune genes of North American monarch butterflies (
Danaus plexippus ), using as an outgroup the closely related soldier butterfly (Danaus eresimus ). As a comparison to these immune genes, we selected a set of control genes that were paired with each immune for approximate size and genomic location. As a whole, these immune genes had a significant but modest reduction in Tajima'sD relative to paired‐control genes, but otherwise did not show distinct patterns of population genetic variation or evolutionary rates. When further partitioning these immune genes into four functional classes (recognition, signalling, modulation, and effector), we found distinct differences among these groups. Relative to control genes, recognition genes exhibit increased nonsynonymous diversity and divergence, suggesting reduced constraints on evolution, and supporting the notion that coevolution with pathogens results in diversifying selection. In contrast, signalling genes showed an opposite pattern of reduced diversity and divergence, suggesting evolutionary constraints and conservation. Modulator and effector genes showed no statistical differences from controls. These results are consistent with patterns found in immune genes in fruit flies andPieris butterflies, suggesting that consistent selective pressures on different classes of immune genes broadly govern the evolution of innate immunity among insects. -
Abstract Sperm are among the most variable cells in nature. Some of this variation results from nonadaptive errors in spermatogenesis, but many species consistently produce multiple sperm morphs, the adaptive significance of which remains unknown. Here, we investigate the evolution of dimorphic sperm in Lepidoptera, the butterflies and moths. Males of this order produce both fertilizing sperm and a secondary, nonfertilizing type that lacks DNA. Previous organismal studies suggested a role for nonfertilizing sperm in sperm competition, but this hypothesis has never been evaluated from a molecular framework. We combined published data sets with new sequencing in two species, the monandrous Carolina sphinx moth and the highly polyandrous monarch butterfly. Based on population genetic analyses, we see evidence for increased adaptive evolution in fertilizing sperm, but only in the polyandrous species. This signal comes primarily from a decrease in nonsynonymous polymorphism in sperm proteins compared to the rest of the genome, suggesting stronger purifying selection, consistent with selection via sperm competition. Nonfertilizing sperm proteins, in contrast, do not show an effect of mating system and do not appear to evolve differently from the background genome in either species, arguing against the involvement of nonfertilizing sperm in direct sperm competition. Based on our results and previous work, we suggest that nonfertilizing sperm may be used to delay female remating in these insects and decrease the risk of sperm competition rather than directly affect its outcome.