skip to main content


Search for: All records

Creators/Authors contains: "Montalvo, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Coastal Communities are exposed to multiple hazards including hurricanes, storm surges, waves, and riverine flash floods. This paper presents the outcome of a Basin-wide Flood Multi-hazard Risks module that was developed and offered as part of a collaboration between two research projects: the UPRM-DHS Coastal Resilience Center of Excellence (CRC) funded by the Department of Homeland Security and the Resilient Infrastructure and Sustainability Education Undergraduate Program (RISE-UP) funded by the National Science Foundation (NSF). The content was designed to give students an understanding of complex project management in coastal communities. The main learning objective was for students to be able to assess and recognize the actions that can be taken to improve resiliency in coastal communities. Students learned how to manage multi-hazard floods. Through knowledge gained by participating in lectures, discussions, and the development of case studies, students were able to assess flood risk and current mitigation strategies for coastal communities in Puerto Rico. The learning experience provided an overview of the history, needs, and challenges that coastal communities face regarding flood and coastal hazards. Through the case studies, students were able to appreciate and understand the risk exposure on the natural and built infrastructure, and the importance of always taking into consideration the social impact. 
    more » « less
  2. Historic science, technology, engineering and mathematics (STEM) disciplinary cultures were founded in a system that was predominately male, white, heterosexual, and able-bodied (i.e., “majority”). Some societal norms have changed, and so has demand for inclusive STEM engagement. However, legacy mental models, or deeply held beliefs and assumptions, linger and are embedded in the STEM system and disciplinary cultures. STEM reform is needed to maximize talent and create inclusive professions, but cannot be achieved without recognizing and addressing norms and practices that disproportionately serve majority vs. minoritized groups. As leading voices in disciplinary work and application, disciplinary and professional societies (Societies) are instrumental in shaping and sustaining STEM norms. We, leaders of the Amplifying the Alliance to Catalyze Change for Equity in STEM Success (ACCESS+) project, recognize the need to provide Society diversity, equity, and inclusion (DEI) change leaders with tools necessary to foster systemic change. In this Perspectives article, we present the Equity Environmental Scanning Tool (EEST) as an aid to help Society DEI change leaders elucidate legacy mental models, discern areas of strength, identify foci for advancement, and benchmark organizational change efforts. We share our rationale and work done to identify, and, ultimately, adapt a Society DEI self-assessment tool from the United Kingdom. We share background information on the UK tool, content and structural changes made to create the EEST, and an overview of the resulting EEST. Ultimately, we seek to increase awareness of a Society-specific DEI self-assessment tool designed to help Society DEI change leaders advance inclusive reform. 
    more » « less
  3. Professional STEM societies have been identified as an important lever to address STEM diversity, equity, and inclusion. In this Perspectives article, we chronicle the highlights of the first Amplifying the Alliance to Catalyze Change for Equity in STEM Success (ACCESS+) convening held in September 2021. Here, we introduce the three-part ACCESS+ approach using a model that entails (i) completion of a DEI self-assessment known as the equity environmental scanning tool, (ii) guided action plan development and iteration, and (iii) sustained participation in a community of practice. 
    more » « less
  4. Science, technology, engineering, and mathematics (STEM) professional societies (ProSs) are uniquely positioned to foster national-level diversity, equity, and inclusion (DEI) reform. ProSs serve broad memberships, define disciplinary norms and culture, and inform accrediting bodies and thus provide critical levers for systems change. STEM ProSs could be instrumental in achieving the DEI system reform necessary to optimize engagement of all STEM talent, leveraging disciplinary excellence resulting from diverse teams. Inclusive STEM system reform requires that underlying “mental models” be examined. The Inclusive Professional Framework for Societies (IPF: Societies) is an interrelated set of strategies that can help ProSs change leaders (i.e., “boundary spanners”) and organizations identify and address mental models hindering DEI reform. The IPF: Societies uses four “I's”—Identity awareness and Intercultural mindfulness (i.e., equity mindset) upon which inclusive relationships and Influential DEI actions are scaffolded. We discuss how the IPF: Societies complements existing DEI tools (e.g., Women in Engineering ProActive Network's Framework for Promoting Gender Equity within Organization; Amplifying the Alliance to Catalyze Change for Equity in STEM Success' Equity Environmental Scan Tool). We explain how the IPF: Societies can be applied to existing ProS policy and practice associated with common ProS functions (e.g., leadership, membership, conferences, awards, and professional development). The next steps are to pilot the IPF: Societies with a cohort of STEM ProSs. Ultimately, the IPF: Societies has potential to promote more efficient, effective, and lasting DEI organizational transformation and contribute to inclusive STEM disciplinary excellence. 
    more » « less
  5. Free, publicly-accessible full text available December 1, 2024
  6. Free, publicly-accessible full text available November 1, 2024
  7. Abstract

    A description is presented of the algorithms used to reconstruct energy deposited in the CMS hadron calorimeter during Run 2 (2015–2018) of the LHC. During Run 2, the characteristic bunch-crossing spacing for proton-proton collisions was 25 ns, which resulted in overlapping signals from adjacent crossings. The energy corresponding to a particular bunch crossing of interest is estimated using the known pulse shapes of energy depositions in the calorimeter, which are measured as functions of both energy and time. A variety of algorithms were developed to mitigate the effects of adjacent bunch crossings on local energy reconstruction in the hadron calorimeter in Run 2, and their performance is compared.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  8. Free, publicly-accessible full text available November 1, 2024
  9. Free, publicly-accessible full text available November 1, 2024
  10. Free, publicly-accessible full text available November 1, 2024