skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Monyake, Keitumetse Cathrine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Froth flotation process is extensively used for selective separation of base metal sulfides from uneconomic mineral resources. Reliable prediction of process outcomes (metal recovery and grade) is vital to ensure peak performance. This work employs an innovative hybrid machine learning (ML) model—constructed by combining the random forest model and the firefly algorithm—to predict froth flotation efficiency of galena and chalcopyrite in relation to various experimental process parameters. The hybrid model's prediction performance was rigorously evaluated, and compared against four different standalone ML models. The outcomes of this study illustrate that the hybrid ML model has the prediction ability to process outcomes with high‐fidelity, while consistently outperforming the standalone ML models. 
    more » « less