skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mooney, T. Aran"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Marine animals equipped with sensors provide vital information for understanding their ecophysiology and collect oceanographic data on climate change and for resource management. Existing methods for attaching sensors to marine animals mostly rely on invasive physical anchors, suction cups, and rigid glues. These methods can suffer from limitations, particularly for adhering to soft fragile marine species such as squid and jellyfish, including slow complex operations, unreliable fixation, tissue trauma, and behavior changes of the animals. However, soft fragile marine species constitute a significant portion of ocean biomass (>38.3 teragrams of carbon) and global commercial fisheries. Here we introduce a soft hydrogel-based bioadhesive interface for marine sensors that can provide rapid (time <22 s), robust (interfacial toughness >160 J m−2), and non-invasive adhesion on various marine animals. Reliable and rapid adhesion enables large-scale, multi-animal sensor deployments to study biomechanics, collective behaviors, interspecific interactions, and concurrent multi-species activity. These findings provide a promising method to expand a burgeoning research field of marine bio-sensing from large marine mammals and fishes to small, soft, and fragile marine animals. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. The_Royal_Society_Publishing (Ed.)
    Coral reefs, hubs of global biodiversity, are among the world’s most imperilled habitats. Healthy coral reefs are characterized by distinctive soundscapes; these environments are rich with sounds produced by fishes and marine invertebrates. Emerging evidence suggests these sounds can be used as orientation and settlement cues for larvae of reef animals. On degraded reefs, these cues may be reduced or absent, impeding the success of larval settlement, which is an essential process for the maintenance and replenishment of reef populations. Here, in a field-based study, we evaluated the effects of enriching the soundscape of a degraded coral reef to increase coral settlement rates.Porites astreoideslarvae were exposed to reef sounds using a custom solar-powered acoustic playback system.Porites astreoidessettled at significantly higher rates at the acoustically enriched sites, averaging 1.7 times (up to maximum of seven times) more settlement compared with control reef sites without acoustic enrichment. Settlement rates decreased with distance from the speaker but remained higher than control levels at least 30 m from the sound source. These results reveal that acoustic enrichment can facilitate coral larval settlement at reasonable distances, offering a promising new method for scientists, managers and restoration practitioners to rebuild coral reefs. 
    more » « less
  3. The settlement of coral larvae is an important process which contributes to the success and longevity of coral reefs. Coral larvae often recruit to benthic structures covered with crustose coralline algae (CCA) which produce cues that promote settlement and metamorphosis. The PeysonneliaceaeRamicrustaspp. are red-brown encrusting alga that have recently become abundant on shallow Caribbean reefs, replacing CCA habitat, overgrowing corals and potentially threatening coral recruitment. In order to assess the threat ofRamicrustato coral recruitment, we compared the survival and settlement ofPorites astreoidesandFavia fragumlarvae to 0.5 – 2 mg ml-1solutions ofRamicrustasp. or CCA as well as sterile seawater (control). In all cases larval mortality was extremely high in theRamicrustatreatments compared to the CCA and control treatments. We found 96% (± 8.9% standard deviation, SD) mortality ofP. astreoideslarvae when exposed to solutions ofRamicrustaand 0 - 4% (± 0 - 8.9% SD) mortality in the CCA treatments. We observed 100%F. fragumlarval mortality when exposed toRamicrustaand 5 – 10% (± 10 – 20% SD) mortality in the CCA treatments. Settlement or surface interaction of larvae in the CCA treatments was 40 - 68% (± 22 - 37% SD) forP. astreoidesand 65 - 75% (± 10 - 19% SD) forF. fragum. TwoP. astreoideslarva that survivedRamicrustaexposure did settle/surface interact, suggesting that some larvae may be tolerant toRamicrusta. These results suggest thatRamicrustais a lethal threat to Caribbean coral recruitment. 
    more » « less
  4. Marine crustaceans produce broadband sounds that are useful for passive acoustic monitoring to support conservation and management efforts. However, the propagation characteristics and detection ranges of their signals are poorly known, limiting our leveraging of these sounds. Here, we used a four-hydrophone linear array to measure source levels (SLs) and sound propagation from Caribbean spiny lobsters (Panulirus argus) of a wide range of sizes within a natural, shallow water habitat (3.3 m depth). Source level in peak-peak (SLpp) varied with body size; larger individuals produced SLpp up to 166 dB re 1 μPa. However, transmission losses (TL) were similar across all sizes, with a global fitted TL of 12.1 dB. Correspondingly, calculated detection ranges varied with body size, ranging between 14 and 364 m for small and large individuals (respectively). This increased up to 1612 m for large spiny lobsters when considering lower ambient noise levels. Despite the potential ease of tank studies, our results highlight the importance of empirical in situ sound propagation studies for marine crustaceans. Given the important ecological and economic role of spiny lobsters, these data are a key step to supporting remote monitoring of this species for fisheries management and efforts to acoustically quantify coral reefs' health. 
    more » « less
  5. Abstract In-situ visual observations of marine organisms is crucial to developing behavioural understandings and their relations to their surrounding ecosystem. Typically, these observations are collected via divers, tags, and remotely-operated or human-piloted vehicles. Recently, however, autonomous underwater vehicles equipped with cameras and embedded computers with GPU capabilities are being developed for a variety of applications, and in particular, can be used to supplement these existing data collection mechanisms where human operation or tags are more difficult. Existing approaches have focused on using fully-supervised tracking methods, but labelled data for many underwater species are severely lacking. Semi-supervised trackers may offer alternative tracking solutions because they require less data than fully-supervised counterparts. However, because there are not existing realistic underwater tracking datasets, the performance of semi-supervised tracking algorithms in the marine domain is not well understood. To better evaluate their performance and utility, in this paper we provide (1) a novel dataset specific to marine animals located athttp://warp.whoi.edu/vmat/, (2) an evaluation of state-of-the-art semi-supervised algorithms in the context of underwater animal tracking, and (3) an evaluation of real-world performance through demonstrations using a semi-supervised algorithm on-board an autonomous underwater vehicle to track marine animals in the wild. 
    more » « less
  6. Marine crustaceans produce broadband sounds that have been mostly characterized in tanks. While tank physical impacts on such signals are documented in the acoustic community, they are overlooked in the bioacoustic literature with limited empirical comparisons. Here, we compared broadband sounds produced at 1 m from spiny lobsters (Panulirus argus) in both tank and in situ conditions. We found significant differences in all sound features (temporal, power, and spectral) between tank and in situ recordings, highlighting that broadband sounds, such as those produced by marine crustaceans, cannot be accurately characterized in tanks. We then explained the three main physical impacts that distort broadband sounds in tanks, respectively known as resonant frequencies, sound reverberation, and low frequency attenuation. Tank resonant frequencies strongly distort the spectral shape of broadband sounds. In the high frequency band (above the tank minimum resonant frequency), reverberation increases sound duration. In the low frequency band (below the tank minimum resonant frequency), low frequencies are highly attenuated due to their longer wavelength compared to the tank size and tank wall boundary conditions (zero pressure) that prevent them from being accurately measured. Taken together, these results highlight the importance of understanding tank physical impacts when characterizing broadband crustacean sounds. 
    more » « less
  7. Abstract—The current approach to exploring and monitoring complex underwater ecosystems, such as coral reefs, is to conduct surveys using diver-held or static cameras, or deploying sensor buoys. These approaches often fail to capture the full variation and complexity of interactions between different reef organisms and their habitat. The CUREE platform presented in this paper provides a unique set of capabilities in the form of robot behaviors and perception algorithms to enable scientists to explore different aspects of an ecosystem. Examples of these capabilities include low-altitude visual surveys, soundscape surveys, habitat characterization, and animal following. We demonstrate these capabilities by describing two field deployments on coral reefs in the US Virgin Islands. In the first deployment, we show that CUREE can identify the preferred habitat type of snapping shrimp in a reef through a combination of a visual survey, habitat characterization, and a soundscape survey. In the second deployment, we demonstrate CUREE’s ability to follow arbitrary animals by separately following a barracuda and stingray for several minutes each in midwater and benthic environments, respectively. 
    more » « less
  8. The ocean’s soundscape is fundamental to marine ecosystems, not only as a source of sensory information critical to many ecological processes but also as an indicator of biodiversity and habitat health. Yet, little is known about how ecoacoustic activity in marine habitats is altered by environmental changes such as temperature. The sounds produced by dense colonies of snapping shrimp dominate temperate and tropical coastal soundscapes worldwide and are a major driver broadband sound pressure level (SPL) patterns. Field recordings of soundscape patterns from the range limit of a snapping shrimp distribution showed that rates of snap production and associated SPL were closely positively correlated to water temperature. Snap rates changed by 15-60% per °C change in regional temperature, accompanied by fluctuations in SPL between 1-2 dB per °C. To test if this relationship was due to a direct effect of temperature, we measured snap rates in controlled experiments using two snapping shrimp species dominant in the Western Atlantic Ocean and Gulf of Mexico ( Alpheus heterochaelis and A. angulosus ). Snap rates were measured for shrimp held at different temperatures (across 10-30 °C range, with upper limit 2°C above current summer mean temperatures) and under different social groupings. Temperature had a significant effect on shrimp snap rates for all social contexts tested (individuals, pairs, and groups). For individuals and shrimp groups, snap production more than doubled between mid-range (20°C) and high (30°C) temperature treatments. Given that snapping shrimp sounds dominate the soundscapes of diverse habitats, including coral reefs, rocky bottoms, seagrass, and oyster beds, the strong influence of temperature on their activity will potentially alter soundscape patterns broadly. Increases in ambient sound levels driven by elevated water temperatures has ecological implications for signal detection, communication, and navigation in key coastal ecosystems for a wide range of organisms, including humans. 
    more » « less
  9. In this paper, we present an approach that enables long-term monitoring of biological activity on coral reefs by extending mission time and adaptively focusing sensing resources on high-value periods. Coral reefs are one of the most biodiverse ecosystems on the planet; yet they are also among the most imperiled: facing bleaching, ecological community collapses due to global climate change, and degradation from human activities. Our proposed method improves the ability of scientists to monitor biological activity and abundance using passive acoustic sensors. We accomplish this by extracting periodicities from the observed abundance, and using them to predict future abundance. This predictive model is then used with a Monte Carlo Tree Search planning algorithm to schedule sampling at periods of high biological activity, and power down the sensor during periods of low activity. In simulated experiments using long-term acoustic datasets collected in the US Virgin Islands, our adaptive Online Sensor Scheduling algorithm is able to double the lifetime of a sensor while simultaneously increasing the average observed acoustic activity by 21%. 
    more » « less