skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moore, Gary"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. We report on the structural and electrochemical properties of a heterogeneous-homogeneous assembly composed of molecular cobaloxime catalysts immobilized onto graphite electrodes via an intervening polyvinylpyridine surface coating. When these modified electrodes are immersed in an organic solvent (propylene carbonate containing 0.1 M tetrabutylammonium perchlorate as a supporting electrolyte) or basic aqueous solutions (0.1 M NaOH), cyclic voltammetry measurements enable determination of the CoIII/IIpeak potentials and CoII/Imidpoint potentials of cobaloximes embedded within the polymeric architectures. Additionally, voltammetry measurements recorded using pH neutral aqueous solutions (0.1 M phosphate buffer) confirm the immobilized cobaloximes remain catalytically active for hydrogen production and operate at a turnover frequency of 1.6 s−1when polarized at –0.35 V vs the H+/H2equilibrium potential. Waveform analysis of redox features associated with immobilized cobaloximes indicates more repulsive interactions within the polymer film at pH neutral vs basic conditions, which is attributed to the increased fraction of pyridinium species at lower pH values. Our measurements also show the number of electrochemically active sites changes when measured in different solvent environments, indicating that electroactive loadings determined under non-catalytic solvent conditions are not necessarily representative of those under catalytic conditions and could thereby lead to misrepresentations of catalytic turnover frequencies. 
    more » « less
  3. null (Ed.)
    Understanding and controlling factors that restrict the rates of fuel-forming reactions are essential to designing effective catalyst-modified semiconductors for applications in solar-to-fuel technologies. Herein, we describe GaAs semiconductors featuring a polymeric coating that contains cobaloxime-type catalysts for photoelectrochemically powering hydrogen production. The activities of these electrodes (limiting current densities >20 mA cm–2 under 1-sun illumination) enable identification of fundamental performance-limiting bottlenecks encountered at relatively high rates of fuel formation. Experiments conducted under varying bias potential, pH, illumination intensity, and scan rate reveal two distinct mechanisms of photoelectrochemical hydrogen production. At relatively low polarization and pH, the limiting photoactivity is independent of illumination conditions and is attributed to a mechanism involving reduction of substrate protons. At relatively high polarization or pH, the limiting photoactivity shows a linear response to increasing photon flux and is attributed to a mechanism involving reduction of substrate water. This work illustrates the complex interplay between transport of photons, electrons, and chemical substrates in photoelectrosynthetic reactions and highlights diagnostic tools for better understanding these processes. 
    more » « less