skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moore, Jeffrey"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract PremiseThe structural and dynamic properties of columnar cacti are key inputs for stability analyses; however, no previous studies have been able to resolve these properties from full‐scale tests in situ. MethodsI present an approach using non‐destructive ambient vibration data to measure the resonance properties (modal frequencies and mode shapes) of single‐stem saguaro cacti and resolve key biomechanical properties. I tested the approach on 11 spears in the Tucson, Arizona region, United States. ResultsSaguaro fundamental frequencies ranged between 0.55 and 3.7 Hz with damping ratios of 1.5–2.1%. Additional higher‐order modes were identified below 10 Hz. Fundamental frequencies scaled linearly with the ratio of stem diameter to height‐squared, but deviated from analytical theory due to an observed increase in Young's modulus for taller plants. Calculated ratios between second‐ and first‐order bending frequencies also deviated from beam theory, indicating that stiffness decreases vertically for a given stem, especially for taller spears. These deviations both likely arise from the morphology of internal wooden ribs, which provide the main flexural rigidity. Numerical modeling at one site confirmed the cantilever approximation and height‐dependent stiffness, revealing an empirically derived Young's modulus that decreased exponentially from 107 Pa at the top of the stem to 108 Pa at its base. Twelve days of monitoring at another site showed that frequencies drift with diurnal cycles, suggesting softening of the outer tissue as temperatures warm during the day. ConclusionsThis non‐destructive approach for structural assessment provides valuable data for biomechanical characterization and stability and ecological analyses. 
    more » « less
    Free, publicly-accessible full text available November 1, 2026
  2. Abstract Bite force is a key metric of organismal performance, and expression of masticatory myosin (MHC-M) is associated with high bite force. However, skeletal muscles are multiscale structures, and it remains unclear how adaptations for force production are integrated across scales. We analyzed myosin isoform composition and physiological cross-sectional area of the jaw muscles and measured their dynamic moment armsex vivousing XROMM (X-ray Reconstruction Of Moving Morphology) in six rodent species. We found modifications at all scales in hard biters (grey squirrels) to prioritize force production. Related species (chipmunk, woodchuck and red squirrel) showed a mix of adaptations across scales, with different muscle phenotypes producing equivalent bite force outputs. By contrast, rat and guinea pig showed modifications at all scales consistent with reduced force production. Our results suggest that selection for ecologically relevant traits – including MHC-M expression – occurs at multiple organizational scales within the rodent craniofacial system. 
    more » « less
    Free, publicly-accessible full text available August 20, 2026
  3. Abstract. Progressive fracturing contributes to structural degradation of natural rock arches and other freestanding rock landforms. However, methods to detect structural changes arising from fracturing are limited, particularly at sites with difficult access and high cultural value, where non-invasive approaches are essential. This study aims to determine how fractures affect the dynamic properties of rock arches, focusing on resonance modes as indicators of structural health conditions. We hypothesize that damage resulting from fracture propagation may influence specific resonance modes that can be identified through ambient vibration modal analysis. We characterized the dynamic properties (i.e., resonance frequencies, damping ratios, and mode shapes) of Hunter Canyon Arch, Utah (USA), using spectral and cross-correlation analyses of data generated from an array of nodal geophones. Results revealed properties of nine resonance modes with frequencies between 1 and 12 Hz. Experimental data were then compared to numerical models with homogeneous and heterogeneous compositions, the latter implementing weak mechanical zones in areas of mapped fractures. All numerical solutions replicated the first two resonance modes of the arch, indicating these modes are insensitive to structural complexity derived from fractures. Meanwhile, heterogenous models with discrete fracture zones succeeded in matching the frequency and shape of one additional higher mode, indicating this mode is sensitive to the presence of fractures and thus most likely to respond to structural change from fracture propagation. An evolutionary crack damage model was then applied to simulate fracture propagation, confirming that only this higher mode is sensitive to structural damage resulting from fracture growth. While examination of fundamental modes is common practice in structural health monitoring studies, our results suggest that analysis of higher-order resonance modes can be more informative for characterizing fracture-driven structural damage. 
    more » « less
    Free, publicly-accessible full text available January 22, 2026
  4. Resonance frequency monitoring can detect structural changes during progressive rock slope failure; however, reversible environmentally-driven frequency drifts may inhibit identification of permanent changes. Frequency drifts are commonly correlated with air temperature, lagging temperature changes by zero to 35–60 days. Here we report observations from two years of monitoring at a rock tower in Utah, USA where annual resonance frequency changes appear to precede air temperature cycles by ~35 days. Using correlations with meteorological data supplemented by numerical modeling, we identify changes in insolation as the primary driver of annual frequency drifts, giving rise to the negative lag time. Sparse in-situ insolation data show that the daily frequency increase lags sunrise by several hours, while frequencies decrease at sunset, responses we attribute to the west facing aspect of the tower. Modeled daily insolation patterns match frequency data for months when in-situ measurements are not available. Numerical models offer the advantage of predicting insolation patterns for different aspects of the rock tower, such as the west facing cliff where measurements would be challenging. Our study highlights the value of long-term datasets in identifying mechanisms driving environmentally associated frequency drifts, understanding that is crucial to facilitate detection of permanent changes during progressive failure. 
    more » « less
  5. Redox-active colloids (RACs) represent a novel class of energy carriers that exchange electrical energy upon contact. Understanding contact-mediated electron transfer dynamics in RACs offers insights into physical contact events in colloidal suspensions and enables quantification of electrical energy transport in nonconjugated polymers. Redox-based electron transport was directly observed in monolayers of micron-sized RACs containing ethyl-viologen side groups via fluorescence microscopy through an unexpected nonlinear electrofluorochromism that is quantitatively coupled to the redox state of the colloid. Via imaging studies, using this electrofluorochromism, the apparent charge transfer diffusion coefficientDCTof the RAC was easily determined. The visualization of energy transport within suspensions of redox-active colloids was also demonstrated. Our work elucidates fundamental mechanisms of energy transport in colloidal systems, informs the development of next-generation redox flow batteries, and may inspire new designs of smart active soft matter including conductive polymers for applications ranging from electrochemical sensors and organic electronics to colloidal robotics. 
    more » « less
    Free, publicly-accessible full text available September 5, 2026
  6. Voids—the nothingness—broadly exist within nanomaterials and impact properties ranging from catalysis to mechanical response. However, understanding nanovoids is challenging due to lack of imaging methods with the needed penetration depth and spatial resolution. Here, we integrate electron tomography, morphometry, graph theory and coarse-grained molecular dynamics simulation to study the formation of interconnected nanovoids in polymer films and their impacts on permeance and nanomechanical behaviour. Using polyamide membranes for molecular separation as a representative system, three-dimensional electron tomography at nanometre resolution reveals nanovoid formation from coalescence of oligomers, supported by coarse-grained molecular dynamics simulations. Void analysis provides otherwise inaccessible inputs for accurate fittings of methanol permeance for polyamide membranes. Three-dimensional structural graphs accounting for the tortuous nanovoids within, measure higher apparent moduli with polyamide membranes of higher graph rigidity. Our study elucidates the significance of nanovoids beyond the nothingness, impacting the synthesis‒morphology‒function relationships of complex nanomaterials. 
    more » « less
  7. Seismic resonance and surface displacement measurements can be implemented in tandem to improve landslide characterization and progressive failure monitoring. Crack aperture data are frequently used in rock slope stability monitoring and often exhibit recognizable trends prior to failure, such as accelerated crack opening. Alternatively, ambient resonance data offer multiple parameters including modal frequencies, damping, and polarization that can be monitored alongside crack aperture and may respond differently to environmental forcings and complex failure evolution. We analyzed data from continuous ambient vibration monitoring and concomitant crack aperture measurements at the Courthouse Mesa instability, a large toppling sandstone slab in Utah, USA. Three years of data revealed crack aperture increases of 2–4 mm/year with no clearly detectable irreversible changes in modal parameters, including frequency. Annually, frequency and displacement varied by 29% and 19% of the mean, respectively, with average and maximum daily frequency fluctuations of 6.5% and 16%, respectively. These reversible cyclic changes were primarily temperature-driven, but annually, frequency was in-phase with temperature whereas crack aperture lagged temperature changes by ∼37 days. Polarization and damping also varied seasonally but were less strongly correlated with temperature. Conceptual 3D finite element modeling demonstrated consistent frequency decreases associated with crack propagation but variable changes in crack aperture measured at a single point; i.e., crack propagation did not always result in increased crack opening but always generated a resonance frequency decrease. Taken together, our data suggest a possible thermal wedging-ratcheting mechanism at the Courthouse Mesa instability, where annual thermoelastic crack closure is impeded by debris infill but the absence of downward crack propagation during the monitoring period is evidenced by no permanent resonance frequency changes. Our study demonstrates that combined seismic resonance and crack aperture data provide an improved description of rock slope instability behavior, supporting refined characterization and monitoring of changes accompanying progressive failure. 
    more » « less