Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Complex networks play a fundamental role in understanding phenomena from the collective behavior of spins, neural networks, and power grids to the spread of diseases. Topological phenomena in such networks have recently been exploited to preserve the response of systems in the presence of disorder. We propose and demonstrate topological structurally disordered systems with a modal structure that enhances nonlinear phenomena in the topological channels by inhibiting the ultrafast leakage of energy from edge modes to bulk modes. We present the construction of the graph and show that its dynamics enhances the topologically protected photon pair generation rate by an order of magnitude. Disordered nonlinear topological graphs will enable advanced quantum interconnects, efficient nonlinear sources, and light-based information processing for artificial intelligence.
-
The propagation of spin waves in magnetically ordered systems has emerged as a potential means to shuttle quantum information over large distances. Conventionally, the arrival time of a spin wavepacket at a distance,
d , is assumed to be determined by its group velocity,v g . Here, we report time-resolved optical measurements of wavepacket propagation in the Kagome ferromagnet Fe3Sn2that demonstrate the arrival of spin information at times significantly less thand /v g . We show that this spin wave “precursor” originates from the interaction of light with the unusual spectrum of magnetostatic modes in Fe3Sn2. Related effects may have far-reaching consequences toward realizing long-range, ultrafast spin wave transport in both ferromagnetic and antiferromagnetic systems. -
Abstract Symmetry-protected topological phases of matter have challenged our understanding of condensed matter systems and harbour exotic phenomena promising to address major technological challenges. Considerable understanding of these phases of matter has been gained recently by considering additional protecting symmetries, different types of quasiparticles, and systems out of equilibrium. Here, we show that symmetries could be enforced not just on full Hamiltonians, but also on their components. We construct a large class of previously unidentified multiplicative topological phases of matter characterized by tensor product Hilbert spaces similar to the Fock space of multiple particles. To demonstrate our methods, we introduce multiplicative topological phases of matter based on the foundational Hopf and Chern insulator phases, the multiplicative Hopf and Chern insulators (MHI and MCI), respectively. The MHI shows the distinctive properties of the parent phases as well as non-trivial topology of a child phase. We also comment on a similar structure in topological superconductors as these multiplicative phases are protected in part by particle-hole symmetry. The MCI phase realizes topologically protected gapless states that do not extend from the valence bands to the conduction bands for open boundary conditions, which respects to the symmetries protecting topological phase. The band connectivity discovered in MCI could serve as a blueprint for potential multiplicative topology with exotic properties.
-
Abstract We show that the quasiparticle kinetic theory for quantum and classical Calogero models reduces to the free-streaming Boltzmann equation. We reconcile this simple emergent behaviour with the strongly interacting character of the model by developing a Bethe–Lax correspondence in the classical case. This demonstrates explicitly that the freely propagating degrees of freedom are not bare particles, but rather quasiparticles corresponding to eigenvectors of the Lax matrix. We apply the resulting kinetic theory to classical Calogero particles in external trapping potentials and find excellent agreement with numerical simulations in all cases, both for harmonic traps that preserve integrability and exhibit perfect revivals, and for anharmonic traps that break microscopic integrability. Our framework also yields a simple description of multi-soliton solutions in a harmonic trap, with solitons corresponding to sharp peaks in the quasiparticle density. Extensions to quantum systems of Calogero particles are discussed.more » « less