skip to main content

Search for: All records

Creators/Authors contains: "Moore, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Enterprises, including military, law enforcement, medical, financial, and commercial organizations, must often share large quantities of data, some potentially sensitive, with many other enterprises. A key issue, the mechanics of data sharing, involves how to precisely and unambiguously specify which data to share with which partner or group of partners. This issue can be addressed through a system of formal data sharing policy definitions and automated enforcement. Several challenges arise when specifying enterprise-level data sharing policies. A first challenge involves the scale and complexity of data types to be shared. An easily understood method is required to represent and visualize an enterprise’s data types and their relationships so that users can quickly, easily, and precisely specify which data types and relationships to share. A second challenge involves the scale and complexity of data sharing partners. Enterprises typically have many partners involved in different projects, and there are often complex hierarchies among groups of partners that must be considered and navigated to specify which partners or groups of partners to include in a data sharing policy. A third challenge is that defining policies formally, given the first two challenges of scale and complexity, requires complex, precise language, but these languages aremore »difficult to use by non-specialists. More useable methods of policy specification are needed. Our approach was to develop a software wizard that walks users through a series of steps for defining a data sharing policy. A combination of innovative and well known methods is used to address these challenges of scale, complexity, and usability.« less
  2. Free, publicly-accessible full text available June 1, 2023
  3. Abstract We present a measurement of the high-energy astrophysical muon–neutrino flux with the IceCube Neutrino Observatory. The measurement uses a high-purity selection of 650k neutrino-induced muon tracks from the northern celestial hemisphere, corresponding to 9.5 yr of experimental data. With respect to previous publications, the measurement is improved by the increased size of the event sample and the extended model testing beyond simple power-law hypotheses. An updated treatment of systematic uncertainties and atmospheric background fluxes has been implemented based on recent models. The best-fit single power-law parameterization for the astrophysical energy spectrum results in a normalization of ϕ @ 100 TeV ν μ + ν ¯ μ = 1.44 − 0.26 + 0.25 × 10 − 18 GeV − 1 cm − 2 s − 1 sr − 1 and a spectral index γ SPL = 2.37 − 0.09 + 0.09 , constrained in the energy range from 15 TeV to 5 PeV. The model tests include a single power law with a spectral cutoff at high energies, a log-parabola model, several source-class-specific flux predictions from the literature, and a model-independent spectral unfolding. The data are consistent with a single power-law hypothesis, however, spectra with softening above one PeV aremore »statistically more favorable at a two-sigma level.« less
    Free, publicly-accessible full text available March 1, 2023
  4. Free, publicly-accessible full text available March 1, 2023
  5. Free, publicly-accessible full text available February 1, 2023
  6. Abstract Ultraluminous infrared galaxies (ULIRGs) have infrared luminosities L IR ≥ 10 12 L ⊙ , making them the most luminous objects in the infrared sky. These dusty objects are generally powered by starbursts with star formation rates that exceed 100 M ⊙ yr −1 , possibly combined with a contribution from an active galactic nucleus. Such environments make ULIRGs plausible sources of astrophysical high-energy neutrinos, which can be observed by the IceCube Neutrino Observatory at the South Pole. We present a stacking search for high-energy neutrinos from a representative sample of 75 ULIRGs with redshift z ≤ 0.13 using 7.5 yr of IceCube data. The results are consistent with a background-only observation, yielding upper limits on the neutrino flux from these 75 ULIRGs. For an unbroken E −2.5 power-law spectrum, we report an upper limit on the stacked flux Φ ν μ + ν ¯ μ 90 % = 3.24 × 10 − 14 TeV − 1 cm − 2 s − 1 ( E / 10 TeV ) − 2.5 at 90% confidence level. In addition, we constrain the contribution of the ULIRG source population to the observed diffuse astrophysical neutrino flux as well as model predictions.
    Free, publicly-accessible full text available February 1, 2023