skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Moore, Tamara J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Within the field of K-2 CS education, unplugged computational thinking (CT) activities have been suggested as beneficial for younger students and shown to impact young students’ skills and motivation to learn about CS. This study sought to examine how children demonstrate CT competencies in unplugged sequencing tasks and how children use manipulatives to solve unplugged sequencing tasks. This case study approach examined two unplugged sequencing tasks for six children ranging from ages four to seven (pre-kindergarten to 2nd grade). Children showed evidence of several CT competencies during the sequencing tasks: (1) pattern recognition, (2) algorithms and procedures, (3) problem decomposition, and (4) debugging. The strategies and use of manipulatives to showcase CT competencies seemed to evolve in complexity based on age and developmental levels. Taking into account children’s abilities to demonstrate CT competencies, this study suggests that sequencing is a developmentally appropriate entry point for young children to begin engaging in other CT competencies. In addition, these unplugged sequencing tasks can also be easily integrated into other activities commonly experienced in early childhood classrooms. 
    more » « less
    Free, publicly-accessible full text available May 27, 2025
  2. Students can begin to lose interest in CS as early as 2nd grade, indicating the importance of engaging students in CS as early as possible. This study examined the integration of computational thinking (CT) into literacy activities in early childhood education (K-2). We describe the co-design process of developing computational thinking literacy integrated curriculum for K-2, and preliminary results of K-2 student engagement in CT and literacy activities 
    more » « less
  3. Recent documents pertaining to K-12 education have fostered a connection between engineering and science education to help better prepare our students and future citizens to better meet the current and future challenges of our modern and technological society. With that connection, there has been a concerted effort to raise the visibility of engineering within K-12 science education, which is reflected in the Framework for K-12 Science Education and the recently released Next Generation Science Standards. As states look towards the adoption and implementation of the Next Generation Science Standards, it is important to take a deeper look at the shift in K-12 science education that is being suggested by these documents and what that means in terms of the potential changes for states that have chosen to adopt these standards. The main research question that has guided the work for this paper is: What is the extent and quality of the engineering that is present in state science standards and the Next Generation Science Standards? This paper will present a detailed analysis of the landscape of engineering in K-12 policy before and after the release of the NGSS through a comparative case study of academic state science standards and Next Generation Science Standards. This comparison provides insight into what the widespread adoption of the NGSS would mean in terms of potential changes in the way we implement science education in the United States. 
    more » « less