skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moran, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We describe, for the first time, egg masses and larval developmental mode of a recently described Antarctic philinoid snail, Waegelea antarctica. Egg masses resembled the gelatinous, attached masses of many temperate philinoid species and contained very large offspring that hatched as developmentally advanced veligers with many juvenile features. Like other Antarctic heterobranch egg masses, development in the masses of W. antarctica appeared to be largely synchronous despite low internal oxygen levels. Hatched larvae could both swim and crawl, and we did not observe metamorphosis over several days. Molecular barcoding using cytochrome c oxidase subunit I (COI) showed an almost perfect (<0.002% difference) match between our specimens from McMurdo Sound in the Ross Sea and a single sequence from a specimen collected >8,000 km away in the Weddell Sea, suggesting either high realized larval dispersal or a recent range expansion. We also describe the egg mass of the related Antarctophiline alata (identified using COI barcoding) from the Ross Sea, which differed from published descriptions in having considerably smaller embryos. 
    more » « less