skip to main content

Search for: All records

Creators/Authors contains: "Moran, Emilio F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2023
  2. Free, publicly-accessible full text available July 1, 2023
  3. Abstract

    Human–environment interactions within and across borders are now more influential than ever, posing unprecedented sustainability challenges. The framework of metacoupling (interactions within and across adjacent and distant coupled human–environment systems) provides a useful tool to evaluate them at diverse temporal and spatial scales. While most metacoupling studies have so far addressed the impacts of distant interactions (telecouplings), few have addressed the complementary and interdependent effects of the interactions within coupled systems (intracouplings) and between adjacent systems (pericouplings). Using the production and trade of a major commodity (soybean) as a demonstration, this paper empirically evaluates the complex effects on deforestation and economic growth across a globally important soybean producing region (Mato Grosso in Brazil). Although this region is influenced by a strong telecoupling process (i.e., soybean trade with national and international markets), intracouplings pose significant effects on deforestation and economic growth within focal municipalities. Furthermore, it generates pericoupling effects (e.g., deforestation) on adjacent municipalities, which precede economic benefits on adjacent systems, and may occur during and after the soybean production takes place. These results show that while economic benefits of the production of agricultural commodities for global markets tend to be localized, their environmental costs tend to be spatially widespread.more »As deforestation also occurred in adjacent areas beyond focal areas with economic development, this study has significant implications for sustainability in an increasingly metacoupled world.

    « less
  4. Hydropower has been the leading source of renewable energy across the world, accounting for up to 71% of this supply as of 2016. This capacity was built up in North America and Europe between 1920 and 1970 when thousands of dams were built. Big dams stopped being built in developed nations, because the best sites for dams were already developed and environmental and social concerns made the costs unacceptable. Nowadays, more dams are being removed in North America and Europe than are being built. The hydropower industry moved to building dams in the developing world and since the 1970s, began to build even larger hydropower dams along the Mekong River Basin, the Amazon River Basin, and the Congo River Basin. The same problems are being repeated: disrupting river ecology, deforestation, losing aquatic and terrestrial biodiversity, releasing substantial greenhouse gases, displacing thousands of people, and altering people’s livelihoods plus affecting the food systems, water quality, and agriculture near them. This paper studies the proliferation of large dams in developing countries and the importance of incorporating climate change into considerations of whether to build a dam along with some of the governance and compensation challenges. We also examine the overestimation of benefitsmore »and underestimation of costs along with changes that are needed to address the legitimate social and environmental concerns of people living in areas where dams are planned. Finally, we propose innovative solutions that can move hydropower toward sustainable practices together with solar, wind, and other renewable sources.« less