- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Cooks, R_Graham (1)
-
Kulathunga, Samadhi_C (1)
-
Mesecar, Andrew_D (1)
-
Morato, Nicolás_M (1)
-
Zhou, Qing (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The sulfotransferase (SULT) 2B1b, which catalyzes the sulfonation of 3β‐hydroxysteroids, has been identified as a potential target for prostate cancer treatment. However, a major limitation for SULT2B1b‐targeted drug discovery is the lack of robust assays compatible with high‐throughput screening and inconsistency in reported kinetic data. For this reason, we developed a novel label‐free assay based on high‐throughput (>1 Hz) desorption electrospray ionization mass spectrometry (DESI‐MS) for the direct quantitation of the sulfoconjugated product (CV<10 %; <1 ng analyte). The performance of this DESI‐based assay was compared against a new fluorometric coupled‐enzyme method that we also developed. Both methodologies provided consistent kinetic data for the reaction of SULT2B1b with its major substrates, indicating the affinity trend pregnenolone>DHEA>cholesterol, for both the phospho‐mimetic and wild‐type SULT2B1b forms. The novel DESI‐MS assay developed here is likely generalizable to other drug discovery efforts and is particularly promising for identification of SULT2B1b inhibitors with potential as prostate cancer therapeutics.more » « less
An official website of the United States government
