skip to main content


Search for: All records

Creators/Authors contains: "Morehead, Alex"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Estimating the accuracy of protein structural models is a critical task in protein bioinformatics. The need for robust methods in the estimation of protein model accuracy (EMA) is prevalent in the field of protein structure prediction, where computationally‐predicted structures need to be screened rapidly for the reliability of the positions predicted for each of their amino acid residues and their overall quality. Current methods proposed for EMA are either coupled tightly to existing protein structure prediction methods or evaluate protein structures without sufficiently leveraging the rich, geometric information available in such structures to guide accuracy estimation. In this work, we propose a geometric message passing neural network referred to as the geometry‐complete perceptron network for protein structure EMA (GCPNet‐EMA), where we demonstrate through rigorous computational benchmarks that GCPNet‐EMA's accuracy estimations are 47% faster and more than 10% (6%) more correlated with ground‐truth measures of per‐residue (per‐target) structural accuracy compared to baseline state‐of‐the‐art methods for tertiary (multimer) structure EMA including AlphaFold 2. The source code and data for GCPNet‐EMA are available on GitHub, and a public web server implementation is freely available.

     
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  2. Abstract Motivation

    The field of geometric deep learning has recently had a profound impact on several scientific domains such as protein structure prediction and design, leading to methodological advancements within and outside of the realm of traditional machine learning. Within this spirit, in this work, we introduce GCPNet, a new chirality-aware SE(3)-equivariant graph neural network designed for representation learning of 3D biomolecular graphs. We show that GCPNet, unlike previous representation learning methods for 3D biomolecules, is widely applicable to a variety of invariant or equivariant node-level, edge-level, and graph-level tasks on biomolecular structures while being able to (1) learn important chiral properties of 3D molecules and (2) detect external force fields.

    Results

    Across four distinct molecular-geometric tasks, we demonstrate that GCPNet’s predictions (1) for protein–ligand binding affinity achieve a statistically significant correlation of 0.608, more than 5%, greater than current state-of-the-art methods; (2) for protein structure ranking achieve statistically significant target-local and dataset-global correlations of 0.616 and 0.871, respectively; (3) for Newtownian many-body systems modeling achieve a task-averaged mean squared error less than 0.01, more than 15% better than current methods; and (4) for molecular chirality recognition achieve a state-of-the-art prediction accuracy of 98.7%, better than any other machine learning method to date.

    Availability and implementation

    The source code, data, and instructions to train new models or reproduce our results are freely available at https://github.com/BioinfoMachineLearning/GCPNet.

     
    more » « less
  3. Abstract

    In this work, we expand on a dataset recently introduced for protein interface prediction (PIP), the Database of Interacting Protein Structures (DIPS), to present DIPS-Plus, an enhanced, feature-rich dataset of 42,112 complexes for machine learning of protein interfaces. While the original DIPS dataset contains only the Cartesian coordinates for atoms contained in the protein complex along with their types, DIPS-Plus contains multiple residue-level features including surface proximities, half-sphere amino acid compositions, and new profile hidden Markov model (HMM)-based sequence features for each amino acid, providing researchers a curated feature bank for training protein interface prediction methods. We demonstrate through rigorous benchmarks that training an existing state-of-the-art (SOTA) model for PIP on DIPS-Plus yields new SOTA results, surpassing the performance of some of the latest models trained on residue-level and atom-level encodings of protein complexes to date.

     
    more » « less
  4. Abstract Motivation

    Proteins interact to form complexes to carry out essential biological functions. Computational methods such as AlphaFold-multimer have been developed to predict the quaternary structures of protein complexes. An important yet largely unsolved challenge in protein complex structure prediction is to accurately estimate the quality of predicted protein complex structures without any knowledge of the corresponding native structures. Such estimations can then be used to select high-quality predicted complex structures to facilitate biomedical research such as protein function analysis and drug discovery.

    Results

    In this work, we introduce a new gated neighborhood-modulating graph transformer to predict the quality of 3D protein complex structures. It incorporates node and edge gates within a graph transformer framework to control information flow during graph message passing. We trained, evaluated and tested the method (called DProQA) on newly-curated protein complex datasets before the 15th Critical Assessment of Techniques for Protein Structure Prediction (CASP15) and then blindly tested it in the 2022 CASP15 experiment. The method was ranked 3rd among the single-model quality assessment methods in CASP15 in terms of the ranking loss of TM-score on 36 complex targets. The rigorous internal and external experiments demonstrate that DProQA is effective in ranking protein complex structures.

    Availability and implementation

    The source code, data, and pre-trained models are available at https://github.com/jianlin-cheng/DProQA.

     
    more » « less
  5. Abstract Motivation

    Quality assessment (QA) of predicted protein tertiary structure models plays an important role in ranking and using them. With the recent development of deep learning end-to-end protein structure prediction techniques for generating highly confident tertiary structures for most proteins, it is important to explore corresponding QA strategies to evaluate and select the structural models predicted by them since these models have better quality and different properties than the models predicted by traditional tertiary structure prediction methods.

    Results

    We develop EnQA, a novel graph-based 3D-equivariant neural network method that is equivariant to rotation and translation of 3D objects to estimate the accuracy of protein structural models by leveraging the structural features acquired from the state-of-the-art tertiary structure prediction method—AlphaFold2. We train and test the method on both traditional model datasets (e.g. the datasets of the Critical Assessment of Techniques for Protein Structure Prediction) and a new dataset of high-quality structural models predicted only by AlphaFold2 for the proteins whose experimental structures were released recently. Our approach achieves state-of-the-art performance on protein structural models predicted by both traditional protein structure prediction methods and the latest end-to-end deep learning method—AlphaFold2. It performs even better than the model QA scores provided by AlphaFold2 itself. The results illustrate that the 3D-equivariant graph neural network is a promising approach to the evaluation of protein structural models. Integrating AlphaFold2 features with other complementary sequence and structural features is important for improving protein model QA.

    Availability and implementation

    The source code is available at https://github.com/BioinfoMachineLearning/EnQA.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less