skip to main content

Search for: All records

Creators/Authors contains: "Morency, Louis-Philippe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Participants in a conversation must carefully monitor the turn-management (speaking and listening) willingness of other conversational partners and adjust their turn-changing behaviors accordingly to have smooth conversation. Many studies have focused on developing actual turn-changing (i.e., next speaker or end-of-turn) models that can predict whether turn-keeping or turn-changing will occur. Participants' verbal and non-verbal behaviors have been used as input features for predictive models. To the best of our knowledge, these studies only model the relationship between participant behavior and turn-changing. Thus, there is no model that takes into account participants' willingness to acquire a turn (turn-management willingness). In this paper, we address the challenge of building such models to predict the willingness of both speakers and listeners. Firstly, we find that dissonance exists between willingness and actual turn-changing. Secondly, we propose predictive models that are based on trimodal inputs, including acoustic, linguistic, and visual cues distilled from conversations. Additionally, we study the impact of modeling willingness to help improve the task of turn-changing prediction. To do so, we introduce a dyadic conversation corpus with annotated scores of speaker/listener turn-management willingness. Our results show that using all three modalities (i.e., acoustic, linguistic, and visual cues) of the speaker and listener is critically important for predicting turn-management willingness. Furthermore, explicitly adding willingness as a prediction task improves the performance of turn-changing prediction. Moreover, turn-management willingness prediction becomes more accurate when this joint prediction of turn-management willingness and turn-changing is performed by using multi-task learning techniques. 
    more » « less
  2. Multimodal fusion addresses the problem of analyzing spoken words in the multimodal context, including visual expressions and prosodic cues. Even when multimodal models lead to performance improvements, it is often unclear whether bimodal and trimodal interactions are learned or whether modalities are processed independently of each other. We propose Multimodal Residual Optimization (MRO) to separate unimodal, bimodal, and trimodal interactions in a multimodal model. This improves interpretability as the multimodal interaction can be quantified. Inspired by Occam’s razor, the main intuition of MRO is that (simpler) unimodal contributions should be learned before learning (more complex) bimodal and trimodal interactions. For example, bimodal predictions should learn to correct the mistakes (residuals) of unimodal predictions, thereby letting the bimodal predictions focus on the remaining bimodal interactions. Empirically, we observe that MRO successfully separates unimodal, bimodal, and trimodal interactions while not degrading predictive performance. We complement our empirical results with a human perception study and observe that MRO learns multimodal interactions that align with human judgments. 
    more » « less
  3. null (Ed.)
  4. This paper studies the hypothesis that not all modalities are always needed to predict affective states. We explore this hypothesis in the context of recognizing three affective states that have shown a relation to a future onset of depression: positive, aggressive, and dysphoric. In particular, we investigate three important modali- ties for face-to-face conversations: vision, language, and acoustic modality. We first perform a human study to better understand which subset of modalities people find informative, when recog- nizing three affective states. As a second contribution, we explore how these human annotations can guide automatic affect recog- nition systems to be more interpretable while not degrading their predictive performance. Our studies show that humans can reliably annotate modality informativeness. Further, we observe that guided models significantly improve interpretability, i.e., they attend to modalities similarly to how humans rate the modality informative- ness, while at the same time showing a slight increase in predictive performance. 
    more » « less
  5. Knowing how much to trust a prediction is important for many critical applications. We describe two simple approaches to estimate uncertainty in regression prediction tasks and compare their performance and complexity against popular approaches. We operationalize uncertainty in regression as the absolute error between a model's prediction and the ground truth. Our two proposed approaches use a secondary model to predict the uncertainty of a primary predictive model. Our first approach leverages the assumption that similar observations are likely to have similar uncertainty and predicts uncertainty with a non-parametric method. Our second approach trains a secondary model to directly predict the uncertainty of the primary predictive model. Both approaches outperform other established uncertainty estimation approaches on the MNIST, DISFA, and BP4D+ datasets. Furthermore, we observe that approaches that directly predict the uncertainty generally perform better than approaches that indirectly estimate uncertainty. 
    more » « less
  6. In recent years, extensive research has emerged in affective computing on topics like automatic emotion recognition and determining the signals that characterize individual emotions. Much less studied, however, is expressiveness—the extent to which someone shows any feeling or emotion. Expressiveness is related to personality and mental health and plays a crucial role in social interaction. As such, the ability to automatically detect or predict expressiveness can facilitate significant advancements in areas ranging from psychiatric care to artificial social intelligence. Motivated by these potential applications, we present an extension of the BP4D+ data set [27] with human ratings of expressiveness and develop methods for (1) automatically predicting expressiveness from visual data and (2) defining relationships between interpretable visual signals and expressiveness. In addition, we study the emotional context in which expressiveness occurs and hypothesize that different sets of signals are indicative of expressiveness in different con-texts (e.g., in response to surprise or in response to pain). Analysis of our statistical models confirms our hypothesis. Consequently, by looking at expressiveness separately in distinct emotional contexts, our predictive models show significant improvements over baselines and achieve com-parable results to human performance in terms of correlation with the ground truth. 
    more » « less