Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2025
-
Coherent light sources, such as free-electron lasers, provide bright beams for studies in biology, chemistry and physics. However, increasing the brightness of these sources requires progressively larger instruments, with the largest examples, such as the Linac Coherent Light Source at Stanford, being several kilometres long. It would be transformative if this scaling trend could be overcome so that compact, bright sources could be employed at universities, hospitals and industrial laboratories. Here we address this issue by rethinking the basic principles of radiation physics. At the core of our work is the introduction of quasiparticle-based light sources that rely on the collective and macroscopic motion of an ensemble of light-emitting charges to evolve and radiate in ways that would be unphysical for single charges. The underlying concept allows for temporal coherence and superradiance in new configurations, such as in plasma accelerators, providing radiation with intriguing properties and clear experimental signatures spanning nearly ten octaves in wavelength, from the terahertz to the extreme ultraviolet. The simplicity of the quasiparticle approach makes it suitable for experimental demonstrations at existing laser and accelerator facilities and also extends well beyond this case to other scenarios such as nonlinear optical configurations.more » « lessFree, publicly-accessible full text available January 1, 2025
-
Plasma-based acceleration has emerged as a promising candidate as an accelerator technology for a future linear collider or a next-generation light source. We consider the plasma wakefield accelerator (PWFA) concept where a plasma wave wake is excited by a particle beam and a trailing beam surfs on the wake. For a linear collider, the energy transfer efficiency from the drive beam to the wake and from the wake to the trailing beam must be large, while the emittance and energy spread of the trailing bunch must be preserved. One way to simultaneously achieve this when accelerating electrons is to use longitudinally shaped bunches and nonlinear wakes. In the linear regime, there is an analytical formalism to obtain the optimal shapes. In the nonlinear regime, however, the optimal shape of the driver to maximize the energy transfer efficiency cannot be precisely obtained because currently no theory describes the wake structure and excitation process for all degrees of nonlinearity. In addition, the ion channel radius is not well defined at the front of the wake where the plasma electrons are not fully blown out by the drive beam. We present results using a novel optimization method to effectively determine a current profile for the drive and trailing beam in PWFA that provides low energy spread, low emittance, and high acceleration efficiency. We parameterize the longitudinal beam current profile as a piecewise-linear function and define optimization objectives. For the trailing beam, the algorithm converges quickly to a nearly inverse trapezoidal trailing beam current profile similar to that predicted by the ultrarelativistic limit of the nonlinear wakefield theory. For the drive beam, the beam profile found by the optimization in the nonlinear regime that maximizes the transformer ratio also resembles that predicted by linear theory. The current profiles found from the optimization method provide higher transformer ratios compared with the linear ramp predicted by the relativistic limit of the nonlinear theory.more » « less