skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Morin, Phillip A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The recent rise of ‘omics and other molecular research technologies alongside improved techniques for tissue preservation have broadened the scope of marine mammal research. Collecting biological samples from wild marine mammals is both logistically challenging and expensive. To enhance the power of marine mammal research, great effort has been made in both the field and the laboratory to ensure the scientific integrity of samples from collection through processing, supporting the long‐term use of precious samples across a broad range of studies. However, identifying the best methods of sample preservation can be challenging, especially as this technological toolkit continues to evolve and expand. Standardizing best practices could maximize the scientific value of biological samples, foster multi‐institutional collaborative efforts across fields, and improve the quality of individual studies by removing potential sources of error from the collection, handling, and preservation processes. With these aims in mind, we summarize relevant literature, share current expert knowledge, and suggest best practices for sample collection and preservation. This manuscript is intended as a reference resource for scientists interested in exploring collaborative studies and preserving samples in a suitable manner for a broad spectrum of analyses, emphasizing support for ‘omics technologies. 
    more » « less
  2. Gaut, Brandon (Ed.)
    Abstract The blue whale, Balaenoptera musculus, is the largest animal known to have ever existed, making it an important case study in longevity and resistance to cancer. To further this and other blue whale-related research, we report a reference-quality, long-read-based genome assembly of this fascinating species. We assembled the genome from PacBio long reads and utilized Illumina/10×, optical maps, and Hi-C data for scaffolding, polishing, and manual curation. We also provided long read RNA-seq data to facilitate the annotation of the assembly by NCBI and Ensembl. Additionally, we annotated both haplotypes using TOGA and measured the genome size by flow cytometry. We then compared the blue whale genome with other cetaceans and artiodactyls, including vaquita (Phocoena sinus), the world's smallest cetacean, to investigate blue whale's unique biological traits. We found a dramatic amplification of several genes in the blue whale genome resulting from a recent burst in segmental duplications, though the possible connection between this amplification and giant body size requires further study. We also discovered sites in the insulin-like growth factor-1 gene correlated with body size in cetaceans. Finally, using our assembly to examine the heterozygosity and historical demography of Pacific and Atlantic blue whale populations, we found that the genomes of both populations are highly heterozygous and that their genetic isolation dates to the last interglacial period. Taken together, these results indicate how a high-quality, annotated blue whale genome will serve as an important resource for biology, evolution, and conservation research. 
    more » « less