skip to main content


Search for: All records

Creators/Authors contains: "Moriya, Takashi J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Early-time light curves/spectra of some hydrogen-rich supernovae (SNe) provide solid evidence of the existence of confined, dense circumstellar matter (CSM) surrounding dying massive stars. We numerically and analytically study the radiative acceleration of CSM in such systems, where the radiation is mainly powered by the interaction between the SN ejecta and the CSM. We find that the acceleration of the unshocked dense CSM ahead of the shock is larger for massive and compact CSM, with velocities reaching up to ∼103km s−1for a CSM of order 0.1Mconfined within ∼1015cm. We show that the dependence of the acceleration on the CSM density helps us explain the diversity of the CSM velocity inferred from the early spectra of some Type II SNe. For explosions in even denser CSM, radiative acceleration can affect the dissipation of strong collisionless shocks formed after the shock breakout, which would affect early nonthermal emission expected from particle acceleration.

     
    more » « less
  2. Abstract We analyze a sample of 45 Type II supernovae from the Zwicky Transient Facility public survey using a grid of hydrodynamical models in order to assess whether theoretically driven forecasts can intelligently guide follow-up observations supporting all-sky survey alert streams. We estimate several progenitor properties and explosion physics parameters, including zero-age main-sequence (ZAMS) mass, mass-loss rate, kinetic energy, 56 Ni mass synthesized, host extinction, and the time of the explosion. Using complete light curves we obtain confident characterizations for 34 events in our sample, with the inferences of the remaining 11 events limited either by poorly constraining data or the boundaries of our model grid. We also simulate real-time characterization of alert stream data by comparing our model grid to various stages of incomplete light curves (Δ t < 25 days, Δ t < 50 days, all data), and find that some parameters are more reliable indicators of true values at early epochs than others. Specifically, ZAMS mass, time of the explosion, steepness parameter β , and host extinction are reasonably constrained with incomplete light-curve data, whereas mass-loss rate, kinetic energy, and 56 Ni mass estimates generally require complete light curves spanning >100 days. We conclude that real-time modeling of transients, supported by multi-band synthetic light curves tailored to survey passbands, can be used as a powerful tool to identify critical epochs of follow-up observations. Our findings are relevant to identifying, prioritizing, and coordinating efficient follow-up of transients discovered by the Vera C. Rubin Observatory. 
    more » « less
    Free, publicly-accessible full text available March 1, 2024
  3. ABSTRACT

    We infer the expected detection number of pair instability supernovae (PISNe) during the operation of the Euclid space telescope based on binary population models. Our models reproduce the global maximum at the primary BH mass of ∼9–10 M⊙ and the overall gradient of the primary BH mass distribution in the binary BH merger rate consistent with recent observations. We consider different PISN conditions depending on the 12C(α, γ)16O reaction rate. The fiducial and 3σ models adopt the standard and 3σ smaller reaction rates, respectively. Our fiducial model predicts that Euclid detects several hydrogen-poor PISNe. For the 3σ model, detection of ∼1 hydrogen-poor PISN by Euclid is expected if the stellar mass distribution extends to Mmax  = 600 M⊙, but the expected number becomes significantly smaller if Mmax  = 300 M⊙. We may be able to distinguish the fiducial and 3σ models by the observed PISN rate. This will help us to constrain the origin of binary BHs and the reaction rate, although there remains a degeneracy between Mmax  and the reaction rate. PISN ejecta mass estimates from light curves and spectra obtained by follow-up observations would be important to disentangle the degeneracy.

     
    more » « less
  4. Abstract

    It was recently proposed that exotic particles can trigger a new stellar instability that is analogous to theee+pair instability if they are produced and reach equilibrium in the stellar plasma. In this study, we construct axion instability supernova (AISN) models caused by the new instability to predict their observational signatures. We focus on heavy axion-like particles (ALPs) with masses of ∼400 keV–2 MeV and coupling with photons ofgaγ∼ 10−5GeV−1. It is found that the56Ni mass and the explosion energy are significantly increased by ALPs for a fixed stellar mass. As a result, the peak times of the light curves of AISNe occur earlier than those of standard pair-instability supernovae by 10–20 days when the ALP mass is equal to the electron mass. Also, the event rate of AISNe is 1.7–2.6 times higher than that of pair-instability supernovae, depending on the high mass cutoff of the initial mass function.

     
    more » « less
  5. ABSTRACT

    Luminosity evolution of some stripped-envelope supernovae such as Type I superluminous supernovae is difficult to explain by the canonical 56Ni nuclear decay heating. A popular alternative heating source is rapid spin-down of strongly magnetized rapidly rotating neutron stars (magnetars). Recent observations have indicated that Type I superluminous supernovae often have bumpy light curves with multiple luminosity peaks. The cause of bumpy light curves is unknown. In this study, we investigate the possibility that the light-curve bumps are caused by variations of the thermal energy injection from magnetar spin-down. We find that a temporal increase in the thermal energy injection can lead to multiple luminosity peaks. The multiple luminosity peaks caused by the variable thermal energy injection is found to be accompanied by significant increase in photospheric temperature, and photospheric radii are not significantly changed. We show that the bumpy light curves of SN 2015bn and SN 2019stc can be reproduced by temporarily increasing magnetar spin-down energy input by a factor of 2–3 for 5–20 d. However, not all the light-curve bumps are accompanied by the clear photospheric temperature increase as predicted by our synthetic models. In particular, the secondary light-curve bump of SN 2019stc is accompanied by a temporal increase in photospheric radii rather than temperature, which is not seen in our synthetic models. We therefore conclude that not all the light-curve bumps observed in luminous supernovae are caused by the variable thermal energy injection from magnetar spin-down and some bumps are likely caused by a different mechanism.

     
    more » « less
  6. Abstract SN 2018ivc is an unusual Type II supernova (SN II). It is a variant of SNe IIL, which might represent a transitional case between SNe IIP with a massive H-rich envelope and SNe IIb with only a small amount of the H-rich envelope. However, SN 2018ivc shows an optical light-curve evolution more complicated than that of canonical SNe IIL. In this paper, we present the results of prompt follow-up observations of SN 2018ivc with the Atacama Large Millimeter/submillimeter Array. Its synchrotron emission is similar to that of SN IIb 1993J, suggesting that it is intrinsically an SN IIb–like explosion of an He star with a modest (∼0.5–1 M ⊙ ) extended H-rich envelope. Its radio, optical, and X-ray light curves are explained primarily by the interaction between the SN ejecta and the circumstellar material (CSM); we thus suggest that it is a rare example (and the first involving the “canonical” SN IIb ejecta) for which the multiwavelength emission is powered mainly by the SN–CSM interaction. The inner CSM density, reflecting the progenitor activity in the final decade, is comparable to that of SN IIb 2013cu, which shows a flash spectral feature. The outer CSM density, and therefore the mass-loss rate in the final ∼200 yr, is higher than that of SN 1993J by a factor of ∼5. We suggest that SN 2018ivc represents a missing link between SNe IIP and SNe IIb/Ib/Ic in the binary evolution scenario. 
    more » « less
  7. Abstract

    We  present the demography of the dynamics and gas mass fraction of 33 extremely metal-poor galaxies (EMPGs) with metallicities of 0.015–0.195Zand low stellar masses of 104–108Min the local universe. We conduct deep optical integral field spectroscopy (IFS) for the low-mass EMPGs with the medium-high resolution (R= 7500) grism of the 8 m Subaru FOCAS IFU instrument by the EMPRESS 3D survey, and investigate the Hαemission of the EMPGs. Exploiting the resolution high enough for the low-mass galaxies, we derive gas dynamics with the Hαlines by the fitting of three-dimensional disk models. We obtain an average maximum rotation velocity (vrot) of 15 ± 3 km s−1and an average intrinsic velocity dispersion (σ0) of 27 ± 10 km s−1for 15 spatially resolved EMPGs out of 33 EMPGs, and find that all 15 EMPGs havevrot/σ0< 1 suggesting dispersion-dominated systems. There is a clear decreasing trend ofvrot/σ0with the decreasing stellar mass and metallicity. We derive the gas mass fraction (fgas) for all 33 EMPGs, and find no clear dependence on stellar mass and metallicity. Thesevrot/σ0andfgastrends should be compared with young high-zgalaxies observed by the forthcoming JWST IFS programs to understand the physical origins of the EMPGs in the local universe.

     
    more » « less
  8. Abstract Type Ia supernovae (SNe Ia) are thermonuclear explosions of degenerate white dwarf stars destabilized by mass accretion from a companion star 1 , but the nature of their progenitors remains poorly understood. A way to discriminate between progenitor systems is through radio observations; a non-degenerate companion star is expected to lose material through winds 2 or binary interaction 3 before explosion, and the supernova ejecta crashing into this nearby circumstellar material should result in radio synchrotron emission. However, despite extensive efforts, no type Ia supernova (SN Ia) has ever been detected at radio wavelengths, which suggests a clean environment and a companion star that is itself a degenerate white dwarf star 4,5 . Here we report on the study of SN 2020eyj, a SN Ia showing helium-rich circumstellar material, as demonstrated by its spectral features, infrared emission and, for the first time in a SN Ia to our knowledge, a radio counterpart. On the basis of our modelling, we conclude that the circumstellar material probably originates from a single-degenerate binary system in which a white dwarf accretes material from a helium donor star, an often proposed formation channel for SNe Ia (refs.  6,7 ). We describe how comprehensive radio follow-up of SN 2020eyj-like SNe Ia can improve the constraints on their progenitor systems. 
    more » « less
    Free, publicly-accessible full text available May 18, 2024
  9. Abstract

    We present kinematics of six local extremely metal-poor galaxies (EMPGs) with low metallicities (0.016–0.098Z) and low stellar masses (104.7–107.6M). Taking deep medium/high-resolution (R∼ 7500) integral-field spectra with 8.2 m Subaru, we resolve the small inner velocity gradients and dispersions of the EMPGs with Hαemission. Carefully masking out substructures originating by inflow and/or outflow, we fit three-dimensional disk models to the observed Hαflux, velocity, and velocity dispersion maps. All the EMPGs show rotational velocities (vrot) of 5–23 km s−1smaller than the velocity dispersions (σ0) of 17–31 km s−1, indicating dispersion-dominated (vrot/σ0= 0.29–0.80 < 1) systems affected by inflow and/or outflow. Except for two EMPGs with large uncertainties, we find that the EMPGs have very large gas-mass fractions offgas≃ 0.9–1.0. Comparing our results with other Hαkinematics studies, we find thatvrot/σ0decreases andfgasincreases with decreasing metallicity, decreasing stellar mass, and increasing specific star formation rate. We also find that simulated high-z(z∼ 7) forming galaxies have gas fractions and dynamics similar to the observed EMPGs. Our EMPG observations and the simulations suggest that primordial galaxies are gas-rich dispersion-dominated systems, which would be identified by the forthcoming James Webb Space Telescope observations atz∼ 7.

     
    more » « less
  10. null (Ed.)