skip to main content

Search for: All records

Creators/Authors contains: "Moriya, Takashi J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Luminosity evolution of some stripped-envelope supernovae such as Type I superluminous supernovae is difficult to explain by the canonical 56Ni nuclear decay heating. A popular alternative heating source is rapid spin-down of strongly magnetized rapidly rotating neutron stars (magnetars). Recent observations have indicated that Type I superluminous supernovae often have bumpy light curves with multiple luminosity peaks. The cause of bumpy light curves is unknown. In this study, we investigate the possibility that the light-curve bumps are caused by variations of the thermal energy injection from magnetar spin-down. We find that a temporal increase in the thermal energy injection can lead to multiple luminosity peaks. The multiple luminosity peaks caused by the variable thermal energy injection is found to be accompanied by significant increase in photospheric temperature, and photospheric radii are not significantly changed. We show that the bumpy light curves of SN 2015bn and SN 2019stc can be reproduced by temporarily increasing magnetar spin-down energy input by a factor of 2–3 for 5–20 d. However, not all the light-curve bumps are accompanied by the clear photospheric temperature increase as predicted by our synthetic models. In particular, the secondary light-curve bump of SN 2019stc is accompanied by a temporal increase in photospheric radii rather thanmore »temperature, which is not seen in our synthetic models. We therefore conclude that not all the light-curve bumps observed in luminous supernovae are caused by the variable thermal energy injection from magnetar spin-down and some bumps are likely caused by a different mechanism.« less
    Free, publicly-accessible full text available June 1, 2023
  2. Abstract

    We present an overview of a deep transient survey of the COSMOS field with the Subaru Hyper Suprime-Cam (HSC). The survey was performed for the 1.77 deg2 ultra-deep layer and 5.78 deg2 deep layer in the Subaru Strategic Program over six- and four-month periods from 2016 to 2017, respectively. The ultra-deep layer reaches a median depth per epoch of 26.4, 26.3, 26.0, 25.6, and 24.6 mag in g, r, i, z, and y bands, respectively; the deep layer is ∼0.6 mag shallower. In total, 1824 supernova candidates were identified. Based on light-curve fitting and derived light-curve shape parameter, we classified 433 objects as Type Ia supernovae (SNe); among these candidates, 129 objects have spectroscopic or COSMOS2015 photometric redshifts and 58 objects are located at z > 1. Our unique data set doubles the number of Type Ia SNe at z > 1 and enables various time-domain analyses of Type II SNe, high-redshift superluminous SNe, variable stars, and active galactic nuclei.