skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mormino, Elizabeth C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Thung, Kim Han (Ed.)
    Alzheimer’s disease (AD) is a neurodegenerative condition that progresses over decades. Early detection of individuals at high risk of future progression toward AD is likely to be of critical significance for the successful treatment and/or prevention of this devastating disease. In this paper, we present an empirical study to characterize how predictable an individual subjects’ future AD trajectory is, several years in advance, based on rich multi-modal data, and using modern deep learning methods. Crucially, the machine learning strategy we propose can handle different future time horizons and can be trained with heterogeneous data that exhibit missingness and non-uniform follow-up visit times. Our experiments demonstrate that our strategy yields predictions that are more accurate than a model trained on a single time horizon (e.g. 3 years), which is common practice in prior literature. We also provide a comparison between linear and nonlinear models, verifying the well-established insight that the latter can offer a boost in performance. Our results also confirm that predicting future decline for cognitively normal (CN) individuals is more challenging than for individuals with mild cognitive impairment (MCI). Intriguingly, however, we discover that prediction accuracy decreases with increasing time horizon for CN subjects, but the trend is in the opposite direction for MCI subjects. Additionally, we quantify the contribution of different data types in prediction, which yields novel insights into the utility of different biomarkers. We find that molecular biomarkers are not as helpful for CN individuals as they are for MCI individuals, whereas magnetic resonance imaging biomarkers (hippocampus volume, specifically) offer a significant boost in prediction accuracy for CN individuals. Finally, we show how our model’s prediction reveals the evolution of individual-level progression risk over a five-year time horizon. Our code is available at https://github.com/batuhankmkaraman/mlbasedad . 
    more » « less
  2. null (Ed.)
    Alzheimer's disease is associated with the cerebral accumulation of neurofibrillary tangles of hyperphosphorylated tau protein. The progressive occurrence of tau aggregates in different brain regions is closely related to neurodegeneration and cognitive impairment. However, our current understanding of tau propagation relies almost exclusively on postmortem histopathology, and the precise propagation dynamics of misfolded tau in the living brain remain poorly understood. Here we combine longitudinal positron emission tomography and dynamic network modeling to test the hypothesis that misfolded tau propagates preferably along neuronal connections. We follow 46 subjects for three or four annual positron emission tomography scans and compare their pathological tau profiles against brain network models of intracellular and extracellular spreading. For each subject, we identify a personalized set of model parameters that characterizes the individual progression of pathological tau. Across all subjects, the mean protein production rate was 0.21 ± 0.15 and the intracellular diffusion coefficient was 0.34 ± 0.43. Our network diffusion model can serve as a tool to detect non-clinical symptoms at an earlier stage and make informed predictions about the timeline of neurodegeneration on an individual personalized basis. 
    more » « less