skip to main content

Search for: All records

Creators/Authors contains: "Morr, Dirk K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The possible realization of Majorana fermions as quasiparticle excitations in condensed-matter physics has created much excitement. Most studies have focused on Majorana bound states; however, propagating Majorana states with linear dispersion have also been predicted. Here, we report scanning tunneling spectroscopic measurements of crystalline domain walls (DWs) in FeSe 0.45 Te 0.55 . We located DWs across which the lattice structure shifts by half a unit cell. These DWs have a finite, flat density of states inside the superconducting gap, which is a hallmark of linearly dispersing modes in one dimension. This signature is absent in DWs in the related superconductor, FeSe, which is not in the topological phase. Our combined data are consistent with the observation of dispersing Majorana states at a π-phase shift DW in a proximitized topological material. 
    more » « less
  2. Abstract

    Spin-fluctuation-mediated unconventional superconductivity can emerge at the border of magnetism, featuring a superconducting order parameter that changes sign in momentum space. Detection of such a sign-change is experimentally challenging, since most probes are not phase-sensitive. The observation of a spin resonance mode (SRM) from inelastic neutron scattering is often seen as strong phase-sensitive evidence for a sign-changing superconducting order parameter, by assuming the SRM is a spin-excitonic bound state. Here we show that for the heavy fermion superconductor CeCoIn5, its SRM defies expectations for a spin-excitonic bound state, and is not a manifestation of sign-changing superconductivity. Instead, the SRM in CeCoIn5likely arises from a reduction of damping to a magnon-like mode in the superconducting state, due to its proximity to magnetic quantum criticality. Our findings emphasize the need for more stringent tests of whether SRMs are spin-excitonic, when using their presence to evidence sign-changing superconductivity.

    more » « less