skip to main content

Search for: All records

Creators/Authors contains: "Morris, James T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Tidal marshes in the Chesapeake Bay are vulnerable to the accelerating rate of sea-level rise (SLR) and subsidence. Restored and created marshes face the same risks as natural marshes, and their resilience to SLR may depend upon appropriate design and implementation. Here, the Coastal Wetland Equilibrium Model (CWEM) was used to assess the resilience of tidal marshes at the Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island (PI) in mid-Chesapeake Bay, MD, where dredged material from navigation channels is being used to create new tidal marshes planted withSpartina alterniflorain the low marsh andS. patensin the high marsh. The site is microtidal with low inorganic sediment inputs, where the rate of marsh elevation change is dominated by the production of organic matter and, therefore, is proportional to net ecosystem production (NEP). The model demonstrated the importance of marsh development for surface elevation gain. In created marshes, the buildout of belowground biomass adds volume and results in faster growth of marsh elevation, but the gains slow as the marsh matures. Elevation gain is the lessor of the recalcitrant fraction of NEP sequestered in sediment or the rate of increase in accommodation space. Marshes can keep up with and fill accommodation space with sequestered NEP up to a tipping point determined by the rate of SLR. The PI low marsh platform was forecasted to drown in about 43 years after construction at the current rate of SLR. Marsh loss can be mitigated by periodic thin layer placement (TLP) of sediment. CWEM was used to simulate PI marsh responses to different TLP strategies and showed that there is an optimal design that will maximize carbon sequestration and resilience depending on the trajectory of mean sea level.

    more » « less
  2. Abstract

    A network of 15 Surface Elevation Tables (SETs) at North Inlet estuary, South Carolina, has been monitored on annual or monthly time scales beginning from 1990 to 1996 and continuing through 2022. Of 73 time series in control plots, 12 had elevation gains equal to or exceeding the local rate of sea-level rise (SLR, 0.34 cm/year). Rising marsh elevation in North Inlet is dominated by organic production and, we hypothesize, is proportional to net ecosystem production. The rate of elevation gain was 0.47 cm/year in plots experimentally fertilized for 10 years with N&P compared to nearby control plots that have gained 0.1 cm/year in 26 years. The excess gains and losses of elevation in fertilized plots were accounted for by changes in belowground biomass and turnover. This is supported by bioassay experiments in marsh organs where at age 2 the belowground biomass of fertilizedS. alternifloraplants was increasing by 1,994 g m−2 year−1, which added a growth premium of 2.4 cm/year to elevation gain. This was contrasted with the net belowground growth of 746 g m−2 year−1in controls, which can add 0.89 cm/year to elevation. Root biomass density was greater in the fertilized bioassay treatments than in controls, plateauing at about 1,374 g m−2and 472 g m−2, respectively. Growth of belowground biomass was dominated by rhizomes, which grew to 3,648 g m−2in the fertilized treatments after 3 years and 1,439 g m−2in the control treatments after 5 years. Depositional wetlands are limited by an exogenous supply of mineral sediment, whereas marshes like North Inlet could be classified as autonomous because they depend on in situ organic production to maintain elevation. Autonomous wetlands are more vulnerable to SLR because their elevation gains are constrained ultimately by photosynthetic efficiency.

    more » « less
  3. Quantitative, broadly applicable metrics of resilience are needed to effectively manage tidal marshes into the future. Here we quantified three metrics of temporal marsh resilience: time to marsh drowning, time to marsh tipping point, and the probability of a regime shift, defined as the conditional probability of a transition to an alternative super-optimal, suboptimal, or drowned state. We used organic matter content (loss on ignition, LOI) and peat age combined with the Coastal Wetland Equilibrium Model (CWEM) to track wetland development and resilience under different sea-level rise scenarios in the Sacramento-San Joaquin Delta (Delta) of California. A 100-year hindcast of the model showed excellent agreement ( R 2 = 0.96) between observed (2.86 mm/year) and predicted vertical accretion rates (2.98 mm/year) and correctly predicted a recovery in LOI ( R 2 = 0.76) after the California Gold Rush. Vertical accretion in the tidal freshwater marshes of the Delta is dominated by organic production. The large elevation range of the vegetation combined with high relative marsh elevation provides Delta marshes with resilience and elevation capital sufficiently great to tolerate centenary sea-level rise (CLSR) as high as 200 cm. The initial relative elevation of a marsh was a strong determinant of marsh survival time and tipping point. For a Delta marsh of average elevation, the tipping point at which vertical accretion no longer keeps up with the rate of sea-level rise is 50 years or more. Simulated, triennial additions of 6 mm of sediment via episodic atmospheric rivers increased the proportion of marshes surviving from 51% to 72% and decreased the proportion drowning from 49% to 28%. Our temporal metrics provide critical time frames for adaptively managing marshes, restoring marshes with the best chance of survival, and seizing opportunities for establishing migration corridors, which are all essential for safeguarding future habitats for sensitive species. 
    more » « less
  4. abstract Coastal ecosystems play a disproportionately large role in society, and climate change is altering their ecological structure and function, as well as their highly valued goods and services. In the present article, we review the results from decade-scale research on coastal ecosystems shaped by foundation species (e.g., coral reefs, kelp forests, coastal marshes, seagrass meadows, mangrove forests, barrier islands) to show how climate change is altering their ecological attributes and services. We demonstrate the value of site-based, long-term studies for quantifying the resilience of coastal systems to climate forcing, identifying thresholds that cause shifts in ecological state, and investigating the capacity of coastal ecosystems to adapt to climate change and the biological mechanisms that underlie it. We draw extensively from research conducted at coastal ecosystems studied by the US Long Term Ecological Research Network, where long-term, spatially extensive observational data are coupled with shorter-term mechanistic studies to understand the ecological consequences of climate change. 
    more » « less
  5. Abstract

    Quantifying carbon fluxes into and out of coastal soils is critical to meeting greenhouse gas reduction and coastal resiliency goals. Numerous ‘blue carbon’ studies have generated, or benefitted from, synthetic datasets. However, the community those efforts inspired does not have a centralized, standardized database of disaggregated data used to estimate carbon stocks and fluxes. In this paper, we describe a data structure designed to standardize data reporting, maximize reuse, and maintain a chain of credit from synthesis to original source. We introduce version 1.0.0. of the Coastal Carbon Library, a global database of 6723 soil profiles representing blue carbon‐storing systems including marshes, mangroves, tidal freshwater forests, and seagrasses. We also present the Coastal Carbon Atlas, an R‐shiny application that can be used to visualize, query, and download portions of the Coastal Carbon Library. The majority (4815) of entries in the database can be used for carbon stock assessments without the need for interpolating missing soil variables, 533 are available for estimating carbon burial rate, and 326 are useful for fitting dynamic soil formation models. Organic matter density significantly varied by habitat with tidal freshwater forests having the highest density, and seagrasses having the lowest. Future work could involve expansion of the synthesis to include more deep stock assessments, increasing the representation of data outside of the U.S., and increasing the amount of data available for mangroves and seagrasses, especially carbon burial rate data. We present proposed best practices for blue carbon data including an emphasis on disaggregation, data publication, dataset documentation, and use of standardized vocabulary and templates whenever appropriate. To conclude, the Coastal Carbon Library and Atlas serve as a general example of a grassroots F.A.I.R. (Findable, Accessible, Interoperable, and Reusable) data effort demonstrating how data producers can coordinate to develop tools relevant to policy and decision‐making.

    more » « less
  6. Abstract

    Mangrove trees are invading saltmarshes at subtropical ecotones globally, but the consequences of this vegetation shift for ecosystem sustainability remain unknown. Using the Coastal Wetland Equilibrium Model (CWEM) to simulate vegetation survival and sediment accretion, we predict that black mangroves,Avicennia germinans, can build soil elevation by 8 mm yr−1, four times greater than saltmarshes at the same site, a finding that is broadly consistent with field measurements of elevation change. Mangroves build elevation more rapidly than saltmarshes by producing much greater live and labile belowground biomass, but when mangroves drown, they abruptly lose elevation due to the large volume of quickly decomposing necromass following flood‐induced mortality. Under certain conditions, young mangroves can accumulate root mass faster than mature trees and, therefore, gain elevation more rapidly, but neither saltmarshes nor mangroves of any age survived a centenary sea‐level increase of 100 cm. The acceleration of sea‐level rise that coastal marshes are encountering raises the question of how coastal wetlands should be optimally managed and these results provide managers with predictive information on wetland building capacity of mangroves versus marshes.

    more » « less
  7. null (Ed.)
  8. Abstract

    Around the world, wetland vulnerability to sea‐level rise (SLR) depends on different factors including tidal regimes, topography, creeks and estuary geometry, sediment availability, vegetation type, etc. The Plum Island estuary (PIE) is a mesotidal wetland system on the east coast of the United States. This research applied a newly updated Hydro‐MEM (integrated hydrodynamic‐marsh) model to assess the impacts of intermediate‐low (50 cm), intermediate (1 m), and intermediate‐high (1.5 m) SLR on marsh evolution by the year 2100. Model advancements include capturing vegetation change, inorganic and below and aboveground organic matter portion of marsh platform accretion, and mudflat creation. Although the results indicate a low vulnerability marsh at the PIE, the vegetation changes from high to low marsh under all SLR scenarios (2%–22%), with the higher bounds belonging to higher rise scenarios. Lower SLR produces more productive marsh (13% gain in high productivity regions), whereas the highest SLR scenario causes increased tidal inundation, which leads to loss in productivity (12% change from high to low productivity regions), generation of mudflats (17% of the domain land), and marsh migration to higher lands. Sensitive nonlinear tidal flow changes, which may be increased or decreased with SLR as a result of mudflat creation, marsh migration, and bottom friction change, emphasize the importance of integrated modeling approaches that include dynamic marsh feedbacks in hydrodynamic modeling and varying hydrodynamic effects on the marsh system.

    more » « less
  9. null (Ed.)