skip to main content

Search for: All records

Creators/Authors contains: "Morris, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this study, we use the EPIC-I I (exposure, persuasion, identification, commitment, and implementation) framework as a lens for viewing instructor perceptions of including diversity, equity, and inclusion (DEI) activities in engineering and computer science undergraduate courses. The results provided evidence of three findings: (a) evidence existed of faculty participation at all levels of EPIC-I, (b) in moving through the EPIC-I framework, the evidence became scanter, and (c) although both groups were small, approximately equal numbers of participants were openly negative as were actively implementing additional DEI supporting activities in their classes. Implications and future work are discussed. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  2. Abstract

    We measure the 3D kinematic structures of the young stars within the central 0.5 pc of our Galactic Center using the 10 m telescopes of the W. M. Keck Observatory over a time span of 25 yr. Using high-precision measurements of positions on the sky and proper motions and radial velocities from new observations and the literature, we constrain the orbital parameters for each young star. Our results show two statistically significant substructures: a clockwise stellar disk with 18 candidate stars, as has been proposed before, but with an improved disk membership; and a second, almost edge-on plane of 10 candidate stars oriented east–west on the sky that includes at least one IRS 13 star. We estimate the eccentricity distribution of each substructure and find that the clockwise disk has 〈e〉 = 0.39 and the edge-on plane has 〈e〉 = 0.68. We also perform simulations of each disk/plane with incompleteness and spatially variable extinction to search for asymmetry. Our results show that the clockwise stellar disk is consistent with a uniform azimuthal distribution within the disk. The edge-on plane has an asymmetry that cannot be explained by variable extinction or incompleteness in the field. The orientation, asymmetric stellar distribution, and high eccentricity of the edge-on plane members suggest that this structure may be a stream associated with the IRS 13 group. The complex dynamical structure of the young nuclear cluster indicates that the star formation process involved complex gas structures and dynamics and is inconsistent with a single massive gaseous disk.

    more » « less
  3. ABSTRACT The way supermassive black holes (SMBHs) in Galactic Centres (GCs) accumulate their mass is not completely determined. At large scales, it is governed by galactic encounters, mass inflows connected to spirals arms and bars, or due to expanding shells from supernova (SN) explosions in the central parts of galaxies. The investigation of the latter process requires an extensive set of gas dynamical simulations to explore the multidimensional parameter space needed to frame the phenomenon. The aims of this paper are to extend our investigation of the importance of SNe for inducing accretion on to an SMBH and carry out a comparison between the fully hydrodynamic code flash and the much less computationally intensive code ring, which uses the thin shell approximation. We simulate 3D expanding shells in a gravitational potential similar to that of the GC with a variety of homogeneous and turbulent environments. In homogeneous media, we find convincing agreement between flash and ring in the shapes of shells and their equivalent radii throughout their whole evolution until they become subsonic. In highly inhomogeneous, turbulent media, there is also a good agreement of shapes and sizes of shells, and of the times of their first contact with the central 1-pc sphere, where we assume that they join the accretion flow. The comparison supports the proposition that an SN occurring at a galactocentric distance of 5 pc typically drives 1–3 M⊙ into the central 1 pc around the GC. 
    more » « less
  4. Abstract

    We have observed the mass-losing carbon star V Hya that is apparently transitioning from an asymptotic giant branch star to a bipolar planetary nebula, at an unprecedented angular resolution of ∼0.″4–0.″6 with the Atacama Large Millimeter/submillimeter Array. Our13CO and12CO (J= 3–2 andJ= 2–1) images have led to the discovery of a remarkable set of six expanding rings within a flared, warped disk structure undergoing dynamical expansion (DUDE) that lies in the system’s equatorial plane. We also find, for the first time, several bipolar, high-velocity outflows, some of which have parabolic morphologies, implying wide-opening angles, while one (found previously) is clumpy and highly collimated. The latter is likely associated with the high-velocity bullet-like ejections of ionized gas from V Hya; a possible molecular counterpart to the oldest of the four bullets can be seen in the12CO images. We find a bright, unresolved central source of continuum emission (FWHM size ≲165 au); about 40% of this emission can be produced in a standard radio photosphere, while the remaining 60% is likely due to thermal emission from very large (millimeter-sized) grains, having mass ≳10−5M. We have used a radiative transfer model to fit the salient characteristics of the DUDE’s13CO and12CO emission out to a radius of 8″ (3200 au) with a flared disk of mass 1.7 × 10−3M, whose expansion velocity increases very rapidly with the radius inside a central region of size ∼200 au, and then more slowly outside it, from 9.5 to 11.5 km s−1. The DUDE’s underlying density decreases radially, interspersed with local increases that represent the observationally well-characterized innermost three rings.

    more » « less
  5. Ahmad Ibrahim (Ed.)
    The purpose of this paper is to detail the initial validation of a scale to assess engineering students’ attitudes toward the value of diversity in engineering and their intentions to enact inclusive behaviors. In study 1, we administered the scale four times. We subjected the first administration to exploratory factor analysis (EFA), and the remaining three administrations to both confirmatory factor analysis (CFA) and tests of longitudinal measurement invariance (LMI). All tests indicated strong evidence for the internal structure of the factor structure of the survey. The four factors were: engineers should value diversity to (a) fulfill a greater purpose and (b) serve customers better; and engineers should (c) challenge discriminatory behavior and (d) promote a healthy work environment. In study 2, we again assessed the structure of the data as described in study 1 and then used the scale to assess potential differences between undergraduate students who participated in activities designed to promote diversity, equity, and inclusion (DEI) (n=116) and those who did not (n=137). Students in the intervention classes demonstrated a small statistically significant increase in their intention to promote a healthy team environment in reference to the comparison classes. No differences were observed between the classes on the other factors. Future directions and implications are discussed. 
    more » « less
  6. null (Ed.)
    This mixed-method study examined the experiences of college students during the COVID- 19 pandemic through surveys, experience sampling data collected over two academic quar- ters (Spring 2019 n1 = 253; Spring 2020 n2 = 147), and semi-structured interviews with 27 undergraduate students. There were no marked changes in mean levels of depressive symptoms, anxiety, stress, or loneliness between 2019 and 2020, or over the course of the Spring 2020 term. Students in both the 2019 and 2020 cohort who indicated psychosocial vulnerability at the initial assessment showed worse psychosocial functioning throughout the entire Spring term relative to other students. However, rates of distress increased faster in 2020 than in 2019 for these individuals. Across individuals, homogeneity of variance tests and multi-level models revealed significant heterogeneity, suggesting the need to examine not just means but the variations in individuals’ experiences. Thematic analysis of interviews characterizes these varied experiences, describing the contexts for students’ challenges and strategies. This analysis highlights the interweaving of psychosocial and academic dis- tress: Challenges such as isolation from peers, lack of interactivity with instructors, and diffi- culty adjusting to family needs had both an emotional and academic toll. Strategies for adjusting to this new context included initiating remote study and hangout sessions with peers, as well as self-learning. In these and other strategies, students used technologies in different ways and for different purposes than they had previously. Supporting qualitative insight about adaptive responses were quantitative findings that students who used more problem-focused forms of coping reported fewer mental health symptoms over the course of the pandemic, even though they perceived their stress as more severe. These findings underline the need for interventions oriented towards problem-focused coping and suggest opportunities for peer role modeling. 
    more » « less
  7. Abstract We report a timing analysis of near-infrared (NIR), X-ray, and submillimeter data during a 3 day coordinated campaign observing Sagittarius A*. Data were collected at 4.5 μ m with the Spitzer Space Telescope, 2–8 keV with the Chandra X-ray Observatory, 3–70 keV with NuSTAR, 340 GHz with ALMA, and 2.2 μ m with the GRAVITY instrument on the Very Large Telescope Interferometer. Two dates show moderate variability with no significant lags between the submillimeter and the infrared at 99% confidence. A moderately bright NIR flare ( F K ∼ 15 mJy) was captured on July 18 simultaneous with an X-ray flare ( F 2−10 keV ∼ 0.1 counts s −1 ) that most likely preceded bright submillimeter flux ( F 340 GHz ∼ 5.5 Jy) by about + 34 − 33 + 14 minutes at 99% confidence. The uncertainty in this lag is dominated by the fact that we did not observe the peak of the submillimeter emission. A synchrotron source cooled through adiabatic expansion can describe a rise in the submillimeter once the synchrotron self-Compton NIR and X-ray peaks have faded. This model predicts high GHz and THz fluxes at the time of the NIR/X-ray peak and electron densities well above those implied from average accretion rates for Sgr A*. However, the higher electron density postulated in this scenario would be in agreement with the idea that 2019 was an extraordinary epoch with a heightened accretion rate. Since the NIR and X-ray peaks can also be fit by a nonthermal synchrotron source with lower electron densities, we cannot rule out an unrelated chance coincidence of this bright submillimeter flare with the NIR/X-ray emission. 
    more » « less
  8. null (Ed.)
    Context. Outflows and feedback are key ingredients of galaxy evolution. Evidence for an outflow arising from the Galactic center (GC) – the so-called GC chimneys – has recently been discovered at radio, infrared, and X-ray bands. Aims. We undertake a detailed examination of the spatial relationships between the emission in the different bands in order to place constraints on the nature and history of the chimneys and to better understand their impact on the GC environment and their relation with Galactic scale outflows. Methods. We compare X-ray, radio, and infrared maps of the central few square degrees. Results. The X-ray, radio, and infrared emissions are deeply interconnected, affecting one another and forming coherent features on scales of hundreds of parsecs, therefore indicating a common physical link associated with the GC outflow. We debate the location of the northern chimney and suggest that it might be located on the front side of the GC because of a significant tilt of the chimneys toward us. We report the presence of strong shocks at the interface between the chimneys and the interstellar medium, which are traced by radio and warm dust emission. We observe entrained molecular gas outflowing within the chimneys, revealing the multiphase nature of the outflow. In particular, the molecular outflow produces a long, strong, and structured shock along the northwestern wall of the chimney. Because of the different dynamical times of the various components of the outflow, the chimneys appear to be shaped by directed large-scale winds launched at different epochs. The data support the idea that the chimneys are embedded in an (often dominant) vertical magnetic field, which likely diverges with increasing latitude. We observe that the thermal pressure associated with the hot plasma appears to be smaller than the ram pressure of the molecular outflow and the magnetic pressure. This leaves open the possibility that either the main driver of the outflow is more powerful than the observed hot plasma, or the chimneys represent a “relic” of past and more powerful activity. Conclusions. These multiwavelength observations corroborate the idea that the chimneys represent the channel connecting the quasi-continuous, but intermittent, activity at the GC with the base of the Fermi bubbles. In particular, the prominent edges and shocks observed in the radio and mid-infrared bands testify to the most powerful, more recent outflows from the central parsecs of the Milky Way. 
    more » « less
  9. null (Ed.)
    Aims. We simulate shells created by supernovae expanding into the interstellar medium of the nuclear region of a galaxy, and analyze how the shell evolution is influenced by the supernova position relative to the galactic center, by the interstellar matter density, and by the combined gravitational pull of the nuclear star cluster and supermassive black hole (SMBH). Methods. We adopted simplified hydrodynamical simulations using the infinitesimally thin layer approximation in 3D (code RING) and determined whether and where the shell expansion may bring new gas into the inner parsec around the SMBH. Results. The simulations show that supernovae occurring within a conical region around the rotational axis of the galaxy can feed the central accretion disk surrounding the SMBH. For ambient densities between 10 3 and 10 5 cm −3 , the average mass deposited into the central parsec by individual supernovae varies between 10 and 1000 solar masses depending on the ambient density and the spatial distribution of supernova events. Supernovae occurring in the aftermath of a starburst event near a galactic center can supply two to three orders of magnitude more mass into the central parsec, depending on the magnitude of the starburst. The deposited mass typically encounters and joins an accretion disk. The fate of that mass is then divided between the growth of the SMBH and an energetically driven outflow from the disk. 
    more » « less