skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Morse, Jennifer F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 12, 2025
  2. Abstract

    The Niwot Ridge and Green Lakes Valley (NWT) long‐term ecological research (LTER) site collects environmental observations spanning both alpine and subalpine regimes. The first observations began in 1952 and have since expanded to nearly 300 available datasets over an area of 99 km2within the north‐central Colorado Rocky Mountains that include hydrological (n = 101), biological (n = 79), biogeochemical (n = 62), and geographical (n = 56) observations. The NWT LTER database is well suited to support hydrologic investigations that require long‐term and interdisciplinary data sets. Experimentation and data collection at the NWT LTER are designed to characterize ecological responses of high‐mountain environments to changes in climate, nutrients, and water availability. In addition to the continuation of the many legacy NWT datasets, expansion of the breadth and utility of the NWT LTER database is driven by new initiatives including (a) a catchment‐scale sensor network of soil moisture, temperature, humidity, and snow‐depth observations to understand hydrologic connectivity and (b) snow‐albedo alteration experiments using black sand to evaluate the effects of snow‐disappearance on ecosystems. Together, these observational and experimental datasets provide a substantial foundation for hydrologic studies seeking to understand and predict changes to catchment and local‐scale process interactions.

     
    more » « less