skip to main content

Search for: All records

Creators/Authors contains: "Morton, Emily"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Cascadia subduction zone (CSZ) is known to host M9 megathrust ruptures; however, no such event has occurred in historical observation. The distribution and characteristics of small‐ to moderate‐sized earthquakes can be used to determine the behavior of the megathrust fault but are notably absent offshore the CSZ due to the distance from onshore seismometers. We use automated subspace detection coupled with an onshore‐offshore seismic deployment to find small‐magnitude earthquakes in the offshore seismogenic zone and analyze their locations in the context of interseismic locking and seismogenic zone extent. We detected and located 5,282 earthquakes, 4,096 of which had been previously undetected. We find that the downdip extent of the seismogenic zone as defined by interplate seismicity agrees with the 20% locking contour of the Schmalzle et al. (2014, geodetic model and extends deeper than predicted by previous thermal models. We cannot determine the updip extent of the seismogenic zone; this may be due to a lack of templates for detection in the updip source area, stress shadows updip of asperity loading, and/or strong locking to the trench. We present a map of possible asperities determined by the small earthquakes in this study. Our asperity locations and extents show some, but not complete, agreement with the asperities modeled from the 1700 M9 rupture and geodetic locking models, and good agreement with the paleo‐rupture extents determined from offshore turbidites and forearc basin‐based asperity estimates. This highlights the need of continued offshore observations over time, and to elucidate fine‐scale variation in locking.

    more » « less
  2. null (Ed.)
    Abstract The Nevada Seismological Laboratory (NSL) at the University of Nevada, Reno, installed eight temporary seismic stations following the 15 May 2020 Mww 6.5 Monte Cristo Range earthquake. The mainshock and resulting aftershock sequence occurred in an unpopulated and sparsely instrumented region of the Mina deflection in the central Walker Lane, approximately 55 km west of Tonopah, Nevada. The temporary stations supplement NSL’s permanent seismic network, providing azimuthal coverage and near-field recording of the aftershock sequence beginning 1–3 days after the mainshock. We expect the deployment to remain in the field until May 2021. NSL initially attempted to acquire the Monte Cristo Range deployment data in real time via cellular telemetry; however, unreliable cellular coverage forced NSL to convert to microwave telemetry within the first week of the sequence to achieve continuous real-time acquisition. Through 31 August 2020, the temporary deployment has captured near-field records of three aftershocks ML≥5 and 25 ML 4–4.9 events. Here, we present details regarding the Monte Cristo Range deployment, instrumentation, and waveform availability. We combine this information with waveform availability and data access details from NSL’s permanent seismic network and partner regional seismic networks to create a comprehensive summary of Monte Cristo Range sequence data. NSL’s Monte Cristo Range temporary and permanent station waveform data are available in near-real time via the Incorporated Research Institutions for Seismology Data Management Center. Derived earthquake products, including NSL’s earthquake catalog and phase picks, are available via the Advanced National Seismic System Comprehensive Earthquake Catalog. The temporary deployment improved catalog completeness and location quality for the Monte Cristo Range sequence. We expect these data to be useful for continued study of the Monte Cristo Range sequence and constraining crustal and seismogenic properties of the Mina deflection and central Walker Lane. 
    more » « less
  3. Abstract Background

    In recent years, technological innovation and entrepreneurship have been emphasized in engineering education. There is a need to better understand which individual‐ and contextual‐level factors are related to engineering students' entrepreneurial intentions.


    This study explores individual and contextual predictors of entrepreneurial intent among undergraduate women and men in engineering and business majors. Entrepreneurial intent is defined as the personal importance that students ascribe to starting a new business or organization.


    The participants included 518 engineering and 471 business undergraduates from 51 U.S. colleges and universities. We examined relationships first by discipline and then by gender in each discipline using regression models with interaction terms.


    Innovation orientation and participation in entrepreneurship activities tied to intent more strongly for engineering students than for business students; in contrast, being at a research institution and selection of novel goals tied to intent more strongly for business students than for their engineering peers. Among engineering students only, being able to switch gears and apply alternative means for reaching one's goal in the face of setbacks was positively related with women's entrepreneurial intent but not with men's.


    Entrepreneurial intent is a function of individual‐level characteristics and academic and social contexts, with some degree of discipline‐specific effects. Diversifying the community of aspiring engineering entrepreneurs is a critical issue that merits attention by the engineering education community.

    more » « less