Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
There is little significant work at the intersection of mathematical and computational epidemiology and detailed psychological processes, representations, and mechanisms. This is true despite general agreement in the scientific community and the general public that human behavior in its seemingly infinite variation and heterogeneity, susceptibility to bias, context, and habit is an integral if not fundamental component of what drives the dynamics of infectious disease. The COVID-19 pandemic serves as a close and poignant reminder. We offer a 10-year prospectus of kinds that centers around an unprecedented scientific approach: the integration of detailed psychological models into rigorous mathematical and computational epidemiological frameworks in a way that pushes the boundaries of both psychological science and population models of behavior.more » « less
-
Large-scale population displacements arising from conflict-induced forced migration generate uncertainty and introduce several policy challenges. Addressing these concerns requires an interdisciplinary approach that integrates knowledge from both computational modeling and social sciences. We propose a generalized computational agent-based modeling framework grounded by Theory of Planned Behavior to model conflict-induced migration outflows within Ukraine during the start of that conflict in 2022. Existing migration modeling frameworks that attempt to address policy implications primarily focus on destination while leaving absent a generalized computational framework grounded by social theory focused on the conflict-induced region. We propose an agent-based framework utilizing a spatiotemporal gravity model and a Bi-threshold model over a Graph Dynamical System to update migration status of agents in conflict-induced regions at fine temporal and spatial granularity. This approach significantly outperforms previous work when examining the case of Russian invasion in Ukraine. Policy implications of the proposed framework are demonstrated by modeling the migration behavior of Ukrainian civilians attempting to flee from regions encircled by Russian forces. We also showcase the generalizability of the model by simulating a past conflict in Burundi, an alternative conflict setting. Results demonstrate the utility of the framework for assessing conflict-induced migration in varied settings as well as identifying vulnerable civilian populations.more » « less
-
In large agent-based models, it is difficult to identify the correlate system-level dynamics with individuallevel attributes. In this paper, we use inverse reinforcement learning to estimate compact representations of behaviors in large-scale pandemic simulations in the form of reward functions. We illustrate the capacity and performance of these representations identifying agent-level attributes that correlate with the emerging dynamics of large-scale multi-agent systems. Our experiments use BESSIE, an ABM for COVID-like epidemic processes, where agents make sequential decisions (e.g., use PPE/refrain from activities) based on observations (e.g., number of mask wearing people) collected when visiting locations to conduct their activities. The IRL-based reformulations of simulation outputs perform significantly better in classification of agent-level attributes than direct classification of decision trajectories and are thus more capable of determining agent-level attributes with definitive role in the collective behavior of the system. We anticipate that this IRL-based approach is broadly applicable to general ABMs.more » « less
-
Abstract The ongoing Russian aggression against Ukraine has forced over eight million people to migrate out of Ukraine. Understanding the dynamics of forced migration is essential for policy-making and for delivering humanitarian assistance. Existing work is hindered by a reliance on observational data which is only available well after the fact. In this work, we study the efficacy of a data-driven agent-based framework motivated by social and behavioral theory in predicting outflow of migrants as a result of conflict events during the initial phase of the Ukraine war. We discuss policy use cases for the proposed framework by demonstrating how it can leverage refugee demographic details to answer pressing policy questions. We also show how to incorporate conflict forecast scenarios to predict future conflict-induced migration flows. Detailed future migration estimates across various conflict scenarios can both help to reduce policymaker uncertainty and improve allocation and staging of limited humanitarian resources in crisis settings.more » « less
-
The power grid is going through significant changes with the introduction of renewable energy sources and the incorporation of smart grid technologies. These rapid advancements necessitate new models and analyses to keep up with the various emergent phenomena they induce. A major prerequisite of such work is the acquisition of well-constructed and accurate network datasets for the power grid infrastructure. In this paper, we propose a robust, scalable framework to synthesize power distribution networks that resemble their physical counterparts for a given region. We use openly available information about interdependent road and building infrastructures to construct the networks. In contrast to prior work based on network statistics, we incorporate engineering and economic constraints to create the networks. Additionally, we provide a framework to create ensembles of power distribution networks to generate multiple possible instances of the network for a given region. The comprehensive dataset consists of nodes with attributes, such as geocoordinates; type of node (residence, transformer, or substation); and edges with attributes, such as geometry, type of line (feeder lines, primary or secondary), and line parameters. For validation, we provide detailed comparisons of the generated networks with actual distribution networks. The generated datasets represent realistic test systems (as compared with standard test cases published by Institute of Electrical and Electronics Engineers (IEEE)) that can be used by network scientists to analyze complex events in power grids and to perform detailed sensitivity and statistical analyses over ensembles of networks.more » « less