skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Mosalpuri, Manish"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. There is a growing need to develop novel technologies that reduce reactive nitrogen concentrations in wastewater streams and decrease our reliance on fossil fuel energy required to produce N-based chemicals and fertilizers. This study conducts a techno-economic analysis (TEA) and a life cycle assessment (LCA) of the electrochemical conversion of nitrate ions (NO3–) present in wastewater to hydroxylamine (NH2OH), a valuable chemical intermediate. We employ experimental data and modeling assumptions to determine NH2OH production costs and life cycle emissions for a small-scale facility (producing 1500 kg-NH2OH/day) and a large-scale facility (producing 50,000 kg-NH2OH/day) integrated into a wastewater treatment plant. The present NH2OH production costs for the small- and large-scale facilities are estimated at $6.14/kg-NH2OH and $5.37/kg-NH2OH, respectively. The parameters dominating the electrochemical reactor cost are electrolyte, separations, and fixed cost, with their values as $1.48, $0.96, and $0.53/kg. Future cost reduction projections indicate that the present NH2OH production costs for the small- and large-scale facilities can be reduced to $2.79/kg-NH2OH and $2.06/kg-NH2OH (NH2OH market price = $1.72/kg), respectively, with improvements in the sensitivity analysis parameters. LCA results indicate that the proposed electrochemical pathway to produce NH2OH has lower life cycle impacts than the conventional pathway. 
    more » « less