skip to main content


Search for: All records

Creators/Authors contains: "Moskalenko, Andrey S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Electro‐optic sampling has emerged as a new quantum technique enabling measurements of electric field fluctuations on subcycle time scales. In a second‐order nonlinear material, the fluctuations of a terahertz field are imprinted onto the polarization properties of an ultrashort probe pulse in the near infrared. The statistics of this time‐domain signal are calculated, incorporating the quantum nature of the involved electric fields right from the beginning. A microscopic quantum theory of the electro‐optic process is developed adopting an ensemble of noninteracting three‐level systems as a model for the nonlinear material. It is found that the response of the nonlinear medium can be separated into a conventional part, which is exploited also in sampling of coherent amplitudes, and quantum contributions, which are independent of the state of the terahertz input. Interactions between the three‐level systems which are mediated by terahertz vacuum fluctuations are causing this quantum response. Conditions under which the classical response serves as a good approximation of the electro‐optic process are also determined and how the statistics of the sampled terahertz field can be reconstructed from the electro‐optic signal is demonstrated. In a complementary regime, electro‐optic sampling can serve as a spectroscopic tool to study the pure quantum susceptibilities of matter.

     
    more » « less
  2. Abstract

    Terahertz (THz) radiation encompasses a wide spectral range within the electromagnetic spectrum that extends from microwaves to the far infrared (100 GHz–∼30 THz). Within its frequency boundaries exist a broad variety of scientific disciplines that have presented, and continue to present, technical challenges to researchers. During the past 50 years, for instance, the demands of the scientific community have substantially evolved and with a need for advanced instrumentation to support radio astronomy, Earth observation, weather forecasting, security imaging, telecommunications, non-destructive device testing and much more. Furthermore, applications have required an emergence of technology from the laboratory environment to production-scale supply and in-the-field deployments ranging from harsh ground-based locations to deep space. In addressing these requirements, the research and development community has advanced related technology and bridged the transition between electronics and photonics that high frequency operation demands. The multidisciplinary nature of THz work was our stimulus for creating the 2017 THz Science and Technology Roadmap (Dhillonet al2017J. Phys. D: Appl. Phys.50043001). As one might envisage, though, there remains much to explore both scientifically and technically and the field has continued to develop and expand rapidly. It is timely, therefore, to revise our previous roadmap and in this 2023 version we both provide an update on key developments in established technical areas that have important scientific and public benefit, and highlight new and emerging areas that show particular promise. The developments that we describe thus span from fundamental scientific research, such as THz astronomy and the emergent area of THz quantum optics, to highly applied and commercially and societally impactful subjects that include 6G THz communications, medical imaging, and climate monitoring and prediction. Our Roadmap vision draws upon the expertise and perspective of multiple international specialists that together provide an overview of past developments and the likely challenges facing the field of THz science and technology in future decades. The document is written in a form that is accessible to policy makers who wish to gain an overview of the current state of the THz art, and for the non-specialist and curious who wish to understand available technology and challenges. A such, our experts deliver a ‘snapshot’ introduction to the current status of the field and provide suggestions for exciting future technical development directions. Ultimately, we intend the Roadmap to portray the advantages and benefits of the THz domain and to stimulate further exploration of the field in support of scientific research and commercial realisation.

     
    more » « less