skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moteki, Shin A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Establishing a strategy for realizing programmed self-assembly is critical in manufacturing materials with functional hybrid structures. In this work, we introduce a robust methodology for enabling multi-component self-assembly using the concept of chirality-directed self-assembly. A specific combination of heterochiral Zn(II) methylene bis(oxazoline) (BOX) complexes can be selectively generated when combinations of enantiomers of chiral BOX ligands are mixed in the presence of Zn(Oac)2. The resulting Zn(II) BOX complexes, unlike non-covalent bonds, are highly stable and stay intact at elevated temperatures, yet can be reversibly disintegrated under mild conditions using EDTA. This approach can be easily applied to multi-functionalize various solid supports enabling the one-pot generation of multi-functional hybrid structures. 
    more » « less
  2. Resin-immobilized catalysts were prepared through chirality-driven self-assembly. The method allows the resin-immobilized catalyst to be regenerated under mild conditions and in situ catalyst exchange to be carried out quantitatively. The uniqueness of the methodology was demonstrated by the preparation of a catalyst for TEMPO oxidation as well as a two-step sequential TEMPO oxidation/aldol condensation sequence enabled by facile catalyst exchange. 
    more » « less
  3. A strategy to build Janus dendrimers via the chirality-directed self-assembly of heteroleptic Zn( ii ) BOX complexes is reported. The method allows quantitative synthesis of Janus dendrimers in situ without the need for purifications. Each dendritic domain of the Janus dendrimers can be recycled upon disassembly at the focal point. 
    more » « less