Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Sherr, Micah ; Shafiq, Zubair (Ed.)Private heavy-hitters is a data-collection task where multiple clients possess private bit strings, and data-collection servers aim to identify the most popular strings without learning anything about the clients' inputs. In this work, we introduce PLASMA: a private analytics framework in the three-server setting that protects the privacy of honest clients and the correctness of the protocol against a coalition of malicious clients and a malicious server. Our core primitives are a verifiable incremental distributed point function (VIDPF) and a batched consistency check, which are of independent interest. Our VIDPF introduces new methods to validate client inputs based on hashing. Meanwhile, our batched consistency check uses Merkle trees to validate multiple client sessions together in a batch. This drastically reduces server communication across multiple client sessions, resulting in significantly less communication compared to related works. Finally, we compare PLASMA with the recent works of Asharov et al. (CCS'22) and Poplar (S&P'21) and compare in terms of monetary cost for different input sizes.more » « lessFree, publicly-accessible full text available July 1, 2025
-
Fully homomorphic encryption (FHE) has become progressively more viable in the years since its original inception in 2009. At the same time, leveraging state-of-the-art schemes in an efficient way for general computation remains prohibitively difficult for the average programmer. In this work, we introduce a new design for a fully homomorphic processor, dubbed Juliet, to enable faster operations on encrypted data using the state-of-the-art TFHE and cuFHE libraries for both CPU and GPU evaluation. To improve usability, we define an expressive assembly language and instruction set architecture (ISA) judiciously designed for end-to-end encrypted computation. We demonstrate Juliet’s capabilities with a broad range of realistic benchmarks including cryptographic algorithms, such as the lightweight ciphers SIMON and SPECK, as well as logistic regression (LR) inference and matrix multiplication.more » « lessFree, publicly-accessible full text available June 19, 2025
-
Private matching for compute (PMC) establishes a match between two datasets owned by mutually distrusted parties (C and P) and allows the parties to input more data for the matched records for arbitrary downstream secure computation without rerunning the private matching component. The state-of-the-art PMC protocols only support two parties and assume that both parties can participate in computationally intensive secure computation. We observe that such operational overhead limits the adoption of these protocols to solely powerful entities as small data owners or devices with minimal computing power will not be able to participate. We introduce two protocols to delegate PMC from party P to untrusted cloud servers, called delegates, allowing multiple smaller P parties to provide inputs containing identifiers and associated values. Our Delegated Private Matching for Compute protocols, called DPMC and DsPMC, establish a join between the datasets of party C and multiple delegators P based on multiple identifiers and compute secret shares of associated values for the identifiers that the parties have in common. We introduce a rerandomizable encrypted oblivious pseudorandom function (OPRF) primitive, called EO, which allows two parties to encrypt, mask, and shuffle their data. Note that EO may be of independent interest. Our DsPMC protocol limits the leakages of DPMC by combining our EO scheme and secure three-party shuffling. Finally, our implementation demonstrates the efficiency of our constructions by outperforming related works by approximately 10x for the total protocol execution and by at least 20x for the computation on the delegators.
Free, publicly-accessible full text available April 1, 2025