skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moyer, Elisabeth_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Convective available potential energy (CAPE), a metric associated with severe weather, is expected to increase with warming, but we have lacked a framework that describes its changes in the populated midlatitudes. In the tropics, theory suggests mean CAPE should rise following the Clausius–Clapeyron (C–C) relationship at ∼6%/K. In the heterogeneous midlatitudes, where the mean change is less relevant, we show that CAPE changes are larger and can be well‐described by a simple framework based on moist static energy surplus, which is robust across climate states. This effect is highly general and holds across both high‐resolution nudged regional simulations and free‐running global climate models. The simplicity of this framework means that complex distributional changes in future CAPE can be well‐captured by a simple scaling of present‐day data using only three parameters. 
    more » « less