skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moyer, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Programmable Logic Controllers are an integral component for managing many different industrial processes (e.g., smart building management, power generation, water and wastewater management, and traffic control systems), and manufacturing and control industries (e.g., oil and natural gas, chemical, pharmaceutical, pulp and paper, food and beverage, automotive, and aerospace). Despite being used widely in many critical infrastructures, PLCs use protocols which make these control systems vulnerable to many common attacks, including man-in-the-middle attacks, denial of service attacks, and memory corruption attacks (e.g., array, stack, and heap overflows, integer overflows, and pointer corruption). In this paper, we propose PLC-PROV, a system for tracking the inputs and outputs of the control system to detect violations in the safety and security policies of the system. We consider a smart building as an example of a PLC-based system and show how PLC-PROV can be applied to ensure that the inputs and outputs are consistent with the intended safety and security policies. 
    more » « less
  2. Identifying the root cause and impact of a system intrusion remains a foundational challenge in computer security. Digital provenance provides a detailed history of the flow of information within a computing system, connecting suspicious events to their root causes. Although existing provenance-based auditing techniques provide value in forensic analysis, they assume that such analysis takes place only retrospectively. Such post-hoc analysis is insufficient for realtime security applications; moreover, even for forensic tasks, prior provenance collection systems exhibited poor performance and scalability, jeopardizing the timeliness of query responses. We present CamQuery, which provides inline, realtime provenance analysis, making it suitable for implementing security applications. CamQuery is a Linux Security Module that offers support for both userspace and in-kernel execution of analysis applications. We demonstrate the applicability of CamQuery to a variety of runtime security applications including data loss prevention, intrusion detection, and regulatory compliance. In evaluation, we demonstrate that CamQuery reduces the latency of realtime query mechanisms, while imposing minimal overheads on system execution. CamQuery thus enables the further deployment of provenance-based technologies to address central challenges in computer security. 
    more » « less
  3. Investigating the nature of system intrusions in large distributed systems remains a notoriously difficult challenge. While monitoring tools (e.g., Firewalls, IDS) provide preliminary alerts through easy-to-use administrative interfaces, attack reconstruction still requires that administrators sift through gigabytes of system audit logs stored locally on hundreds of machines. At present, two fundamental obstacles prevent synergy between system-layer auditing and modern cluster monitoring tools: 1) the sheer volume of audit data generated in a data center is prohibitively costly to transmit to a central node, and 2) system- layer auditing poses a “needle-in-a-haystack” problem, such that hundreds of employee hours may be required to diagnose a single intrusion. This paper presents Winnower, a scalable system for audit-based cluster monitoring that addresses these challenges. Our key insight is that, for tasks that are replicated across nodes in a distributed application, a model can be defined over audit logs to succinctly summarize the behavior of many nodes, thus eliminating the need to transmit redundant audit records to a central monitoring node. Specifically, Winnower parses audit records into provenance graphs that describe the actions of individual nodes, then performs grammatical inference over individual graphs using a novel adaptation of Deterministic Finite Automata (DFA) Learning to produce a behavioral model of many nodes at once. This provenance model can be efficiently transmitted to a central node and used to identify anomalous events in the cluster. We have implemented Winnower for Docker Swarm container clusters and evaluate our system against real-world applications and attacks. We show that Winnower dramatically reduces storage and network overhead associated with aggregating system audit logs, by as much as 98%, without sacrificing the important information needed for attack investigation. Winnower thus represents a significant step forward for security monitoring in distributed systems. 
    more » « less