skip to main content

Search for: All records

Creators/Authors contains: "Mrvar, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2022
  2. Free, publicly-accessible full text available December 1, 2022
  3. A bstract We report the first measurement of the exclusive cross sections e + e − → $$ B\overline{B} $$ B B ¯ , e + e − → $$ B{\overline{B}}^{\ast } $$ B B ¯ ∗ , and e + e − → $$ {B}^{\ast }{\overline{B}}^{\ast } $$ B ∗ B ¯ ∗ in the energy range from 10 . 63 GeV to 11 . 02 GeV. The B mesons are fully reconstructed in a large number of hadronic final states and the three channels are identified using a beam-constrained-mass variable. The shapes of the exclusive cross sections show oscillatory behavior with several maxima and minima. The results are obtained using data collected by the Belle experiment at the KEKB asymmetric-energy e + e − collider.
  4. A bstract We present a search for the dark photon A ′ in the B 0 → A ′ A ′ decays, where A ′ subsequently decays to e + e − , μ + μ − , and π + π − . The search is performed by analyzing 772 × 10 6 $$ B\overline{B} $$ B B ¯ events collected by the Belle detector at the KEKB e + e − energy-asymmetric collider at the ϒ(4 S ) resonance. No signal is found in the dark photon mass range 0 . 01 GeV /c 2 ≤ m A ′ ≤ 2 . 62 GeV /c 2 , and we set upper limits of the branching fraction of B 0 → A ′ A ′ at the 90% confidence level. The products of branching fractions, $$ \mathrm{\mathcal{B}}\left({B}^0\to A^{\prime }A^{\prime}\right)\times \mathrm{\mathcal{B}}{\left(A\prime \to {e}^{+}{e}^{-}\right)}^2 $$ ℬ B 0 → A ′ A ′ × ℬ A ′ → e + e − 2 and $$ \mathrm{\mathcal{B}}\left({B}^0\to A^{\prime }A^{\prime}\right)\times \mathrm{\mathcal{B}}{\left(A\prime \to {\mu}^{+}{\mu}^{-}\right)}^2 $$ ℬ B 0 → A ′ A ′ × ℬ A ′ → μ + μ − 2 , have limits of the order of 10 − 8 dependingmore »on the A ′ mass. Furthermore, considering A ′ decay rate to each pair of charged particles, the upper limits of $$ \mathrm{\mathcal{B}}\left({B}^0\to A^{\prime }A^{\prime}\right) $$ ℬ B 0 → A ′ A ′ are of the order of 10 − 8 –10 − 5 . From the upper limits of $$ \mathrm{\mathcal{B}}\left({B}^0\to A^{\prime }A^{\prime}\right) $$ ℬ B 0 → A ′ A ′ , we obtain the Higgs portal coupling for each assumed dark photon and dark Higgs mass. The Higgs portal couplings are of the order of 10 − 2 –10 − 1 at $$ {m}_{h\prime}\simeq {m}_{B^0} $$ m h ′ ≃ m B 0 ± 40 MeV /c 2 and 10 − 1 –1 at $$ {m}_{h\prime}\simeq {m}_{B^0} $$ m h ′ ≃ m B 0 ± 3 GeV /c 2 .« less
  5. Free, publicly-accessible full text available November 1, 2022