skip to main content


Search for: All records

Creators/Authors contains: "Muchlinski, Magdalena N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    By combining muscle architectural data with biomechanical variables relating to the jaw, we produce anatomically derived maximum bite force estimations for 23 species of catarrhine and platyrrhine primates. We investigate how bite force scales across the sample as a whole (and within each parvorder) relative to two size proxies, body mass and cranial geometric mean, and the effect of diet upon bite force. Bite force is estimated at three representative bite points along the dental row: the first maxillary incisor, canine, and third‐most mesial paracone. We modeled bite force by combining calculated physiological cross‐sectional area of the jaw adductors from Hartstone‐Rose et al. [Anat Rec 301 (2018) 311–324] with osteological measurements of lever‐ and load‐arm lengths from the same specimens [Hartstone‐Rose et al., Anat Rec 295 (2012) 1336–1351]. Bite force scales with positive allometry relative to cranial geometric mean across our entire sample and tends toward positive allometry relative to body mass. Bite force tends toward positive allometry within platyrrhines but scales isometrically within catarrhines. There was no statistically significant scaling difference with diet. Our findings imply an absence of a dietary signal in the scaling of bite force, a result that differs from the scaling of physiological cross‐sectional area alone. That is, although previous studies have found a dietary signal in the muscle fiber architecture in these species, when these are combined with their leverages, that signal is undetectable. On the parvorder level, our data also demonstrate that the platyrrhine masticatory system appears more mechanically advantageous than that of catarrhines. Anat Rec, 2019. © 2019 American Association for Anatomy Anat Rec, 303:2026–2035, 2020. © 2019 American Association for Anatomy

     
    more » « less
  2. ABSTRACT

    While most mammals have whiskers, some tactile specialists—mainly small, nocturnal, and arboreal species—can actively move their whiskers in a symmetrical, cyclic movement called whisking. Whisking enables mammals to rapidly, tactually scan their environment to efficiently guide locomotion and foraging in complex habitats. The muscle architecture that enables whisking is preserved from marsupials to primates, prompting researchers to suggest that a common ancestor might have had moveable whiskers. Studying the evolution of whisker touch sensing is difficult, and we suggest that measuring an aspect of skull morphology that correlates with whisking would enable comparisons between extinct and extant mammals. We find that whisking mammals have larger infraorbital foramen (IOF) areas, which indicates larger infraorbital nerves and an increase in sensory acuity. While this relationship is quite variable and IOF area cannot be used to solely predict the presence of whisking, whisking mammals all have large IOF areas. Generally, this pattern holds true regardless of an animal's substrate preferences or activity patterns. Data from fossil mammals and ancestral character state reconstruction and tracing techniques for extant mammals suggest that whisking is not the ancestral state for therian mammals. Instead, whisking appears to have evolved independently as many as seven times across the clades Marsupialia, Afrosoricida, Eulipotyphla, and Rodentia, with Xenarthra the only placental superordinal clade lacking whisking species. However, the term whisking only captures symmetrical and rhythmic movements of the whiskers, rather than all possible whisker movements, and early mammals may still have had moveable whiskers. Anat Rec, 2018. © 2018 American Association for Anatomy.

     
    more » « less
  3. ABSTRACT

    Hapalemur sps. andProlemur simus(bamboo lemurs, collectively) stand out from the relatively homogeneous lemurids because they are bamboo feeders and vertical clingers and leapers. This unique diet presents equally unique challenges, like its verticality, toughness, and toxicity. The bamboo lemurs share the generalized anatomy of the other lemurids, but also display some well‐documented skeletal adaptations, perhaps to overcome the problems presented by their specialization. Soft‐tissue adaptations, however, remain largely unexplored. Explored here are possible soft‐tissue adaptations inHapalemur griseus. We compareH.griseuswith other lemurids,Propithecus,Galago,Tarsier, and a tree shrew. Based on the available anatomical and physiological data, we hypothesize thatHapalemurandProlemurspecies will have differences in hindlimb morphology when compared with other lemurids. We predict thatH.griseuswill have more hindlimb muscle mass and will amplify muscle mass differences with increased type II muscle fibers. Relative hindlimb muscle mass inH.griseusis less than other prosimians sampled, yet relative sural muscle mass is significantly heavier (P< 0.01) inH.griseus. Results show that the soleus muscle ofH.griseushas a higher amount of type II (fast) fibers in plantarflexors. These findings indicate althoughH.griseusshares some generalized lemurid morphology, its diet of bamboo may have pushed this generalized lemurid to an anatomical extreme. We suspect additional bamboo‐specific adaptations in their anatomy and physiology will be uncovered with further examination into the anatomy of the bamboo lemurs. Anat Rec, 2019. © 2019 Wiley Periodicals, Inc. Anat Rec, 303:295–307, 2020. © 2019 American Association for Anatomy

     
    more » « less
  4. Abstract Objectives

    It is widely viewed that orangutans lack aligamentum teres femoris(LTF) inserting on the femoral head because orangutans lack a distinct fovea capitis. Orangutans employ acrobatic quadrumanous clambering that requires a high level of hip joint mobility, and the absence of an LTF is believed to be an adaptation to increase hip mobility. However, there are conflicting reports in the literature about whether there may be a different LTF configuration in orangutans, perhaps with a ligament inserting on the femoral neck instead. Here we perform a dissection‐based study of orangutan hip joints, assess the soft tissue and hard tissue correlates of the orangutan LTF, and histologically examination the LTF to evaluate whether it is homologous to that found in other hominoids.

    Materials and methods

    The hip joints from six orangutans were dissected. In the two orangutans with an LTF passing to the femoral head, the LTF was assessed histologically. Skeletonized femora (n=56) in osteological repositories were examined for evidence of a foveal pit.

    Results

    We observed an LTF in two of the three infant orangutans but not in the sub‐adult or adult specimens. Histological examination of the infant LTF shows a distinct artery coursing through the LTF to the head of the femur. One percent of orangutan femora present with a foveal scar, but no pit, on the femoral head.

    Discussion

    Despite being absent in adults, the LTF is present in at least some orangutans during infancy. We suggest that the LTF maintains a role in blood supply to the femoral head early in life. Because the LTF can limit hip mobility, this may explain why the LTF may be lost as an orangutan ages and gains locomotor independence. These findings enhance our understanding of orangutan hip morphology and underscore the need for future soft tissue investigations.

     
    more » « less