skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mueller, Erich J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study a 2D measurement-only random circuit motivated by the Bacon-Shor error correcting code. We find a rich phase diagram as one varies the relative probabilities of measuring nearest-neighbor Pauli XX and ZZ check operators. In the Bacon-Shor code, these checks commute with a group of stabilizer and logical operators, which therefore represent conserved quantities. Described as a subsystem symmetry, these conservation laws lead to a continuous phase transition between an X-basis and Z-basis spin-glass order. The two phases are separated by a critical point where the entanglement entropy between two halves of an L × L system scales as L ln L, a logarithmic violation of the area law. We generalize to a model where the check operators break the subsystem symmetries (and the Bacon-Shor code structure). In tension with established heuristics, we find that the phase transition is replaced by a smooth crossover, and the X - and Z -basis spin-glass orders spatially coexist. Additionally, if we approach the line of subsystem symmetries away from the critical point in the phase diagram, some spin-glass order parameters jump discontinuously. 
    more » « less
  2. Abstract Evidence of fluctuations in transport have long been predicted in3He. They are expected to contribute only within 100μK ofTcand play a vital role in the theoretical modeling of ordering; they encode details about the Fermi liquid parameters, pairing symmetry, and scattering phase shifts. It is expected that they will be of crucial importance for transport probes of the topologically nontrivial features of superfluid3He under strong confinement. Here we characterize the temperature and pressure dependence of the fluctuation signature, by monitoring the quality factor of a quartz tuning fork oscillator. We have observed a fluctuation-driven reduction in the viscosity of bulk3He, finding data collapse consistent with the predicted theoretical behavior. 
    more » « less