Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Precipitation channelled down tree stems (stemflow) or into drip points of ‘throughfall’ beneath trees results in spatially concentrated inputs of water and chemicals to the ground. Currently, these flows are poorly characterised due to uncertainties about which branches redirect rainfall to stemflow or throughfall drip points.We introduce a graph theoretic algorithm that ‘prunes’ quantitative structural models of trees (derived from terrestrial LiDAR) to identify branches contributing to stemflow and those contributing to throughfall drip points. To demonstrate the method's utility, we analysed two trees with similar canopy sizes but contrasting canopy architecture and rainfall partitioning behaviours.For both trees, the branch ‘watershed’ area contributing to stemflow (under conditions assumed to represent moderate precipitation intensity) was found to be only half of the total ground area covered by the canopy. The study also revealed significant variations between trees in the number and median contribution areas of modelled throughfall drip points (69 vs. 94 drip points tree−1, with contributing projected areas of 28.6 vs. 7.8 m2tree−1, respectively). Branch diameter, surface area, volumes and woody area index of components contributing to stemflow and throughfall drip points may play a role in the trees' differing rainfall partitioning behaviours.Our pruning algorithm, enabled by the proliferation of LiDAR observations of canopy structure, promises to enhance studies of canopy hydrology. It offers a novel approach to refine our understanding of how trees interact with rainfall, thereby broadening the utility of existing LiDAR data in environmental research.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Abstract Gymnosperms encompass a diverse group of mostly woody plants with high ecological and economic value, yet little is known about the scope and organization of fine‐root trait diversity among gymnosperms due to the undersampling of most gymnosperm families and the dominance of angiosperm groups in recent syntheses.New and existing data were compiled for morphological traits (root diameter, length, tissue density, specific root length [SRL] and specific root area [SRA]), the architectural trait branching ratio, root nitrogen content [N] and mycorrhizal colonization. We used phylogenetic least squares regression and principal component analysis to determine trait–trait relationships and coordination across 66 species, representing 11 of the 12 extant gymnosperm families from boreal, temperate, subtropical and tropical biomes. Finally, we compared the relationship between family divergence time and mean trait values to determine whether evolutionary history structured variation in fine‐root traits within the gymnosperm phylogeny.Wide variation in gymnosperm root traits could be largely captured by two primary axes of variation defined by SRL and diameter, and root tissue density and root nitrogen, respectively. However, individual root length and SRA each had significant correlations with traits defining both main axes of variation. Neither mycorrhizal colonization nor root branching ratio were closely related to other traits. We did not observe a directional evolution of mean trait values from older to more recently diverged gymnosperm families.Synthesis. Despite their unique evolutionary history, gymnosperms display a root economic space similar to that identified in angiosperms, likely reflecting common constraints on plants adapting to diverse environments in both groups. These findings provide greater confidence that patterns observed in broad syntheses justly capture patterns of trait diversity among multiple, distinct lineages. Additionally, independence between root architecture and other traits may support greater diversity in below‐ground resource acquisition strategies. Unlike angiosperms, there were no clear trends towards increasingly thin roots over evolutionary time, possibly because of lower diversification rates or unique biogeographic history among gymnosperms, though additional observations are needed to more richly test evolutionary trends among gymnosperms.more » « less
-
Abstract Stormwater is a vital resource and dynamic driver of terrestrial ecosystem processes. However, processes controlling interactions during and shortly after storms are often poorly seen and poorly sensed when direct observations are substituted with technological ones. We discuss how human observations complement technological ones and the benefits of scientists spending more time in the storm. Human observation can reveal ephemeral storm-related phenomena such as biogeochemical hot moments, organismal responses, and sedimentary processes that can then be explored in greater resolution using sensors and virtual experiments. Storm-related phenomena trigger lasting, oversized impacts on hydrologic and biogeochemical processes, organismal traits or functions, and ecosystem services at all scales. We provide examples of phenomena in forests, across disciplines and scales, that have been overlooked in past research to inspire mindful, holistic observation of ecosystems during storms. We conclude that technological observations alone are insufficient to trace the process complexity and unpredictability of fleeting biogeochemical or ecological events without the shower thoughts produced by scientists’ human sensory and cognitive systems during storms.more » « less