Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Between 2014 and 2018, the National Oceanic and Atmospheric Administration conducted the NOAA Satellite Observing System Architecture (NSOSA) study to plan for the next generation of operational environmental satellites. The study generated some important questions that could be addressed by observing system simulation experiments (OSSEs). This paper describes a series of OSSEs in which benefits to numerical weather prediction from existing observing systems are combined with enhancements from potential future capabilities. Assessments include the relative value of the quantity of different types of thermodynamic soundings for global numerical weather applications. We compare the relative impact of several sounding configuration scenarios for infrared (IR), microwave (MW), and radio occultation (RO) observing capabilities. The main results are 1) increasing the revisit rate for satellite radiance soundings produces the largest benefits but at a significant cost by requiring an increase in the number of polar-orbiting satellites from 2 to 12; 2) a large positive impact is found when the number of RO soundings per day is increased well beyond current values and other observations are held at current levels of performance; 3) RO can be used as a mitigation strategy for lower MW/IR sounding revisit rates, particularly in the tropics; and 4) smaller benefits result from increasing the horizontal resolution along the track of the satellites of MW/IR satellite radiances. Furthermore, disaggregating IR and MW instruments into six evenly distributed sun-synchronous orbits is slightly more beneficial than when the same instruments are combined and collocated on three separate orbits.more » « less
- 
            Abstract Quantitative magnetic resonance imaging (qMRI) measures have provided insights into the composition, quality, and structure‐function of musculoskeletal tissues. Low signal‐to‐noise ratio has limited application to tendon. Advances in scanning sequences and sample positioning have improved signal from tendon allowing for evaluation of structure and function. The purpose of this study was to elucidate relationships between tendon qMRI metrics (T1, T2, T1ρ and diffusion tensor imaging [DTI] metrics) with tendon tissue mechanics, collagen concentration and organization. Sixteen human Achilles tendon specimens were collected, imaged with qMRI, and subjected to mechanical testing with quantitative polarized light imaging. T2 values were related to tendon mechanics [peak stress (rsp = 0.51,p = 0.044), equilibrium stress (rsp = 0.54,p = 0.033), percent relaxation (rsp = −0.55,p = 0.027), hysteresis (rsp = −0.64,p = 0.007), linear modulus (rsp = 0.67,p = 0.009)]. T1ρ had a statistically significant relationship with percent relaxation (r = 0.50,p = 0.048). Collagen content was significantly related to DTI measures (range ofr = 0.56–0.62). T2 values from a single slice of the midportion of human Achilles tendons were strongest predictors of tendon tensile mechanical metrics. DTI diffusivity indices (mean diffusivity, axial diffusivity, radial diffusivity) were strongly correlated with collagen content. These findings build on a growing body of literature supporting the feasibility of qMRI to characterize tendon tissue and noninvasively measure tendon structure and function. Statement of Clinical Significance: Quantitative MRI can be applied to characterize tendon tissue and is a noninvasive measure that relates to tendon composition and mechanical behavior.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
