Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Skrede, I (Ed.)The Ordway-Swisher Biological Station (OSBS) is a 38-km2 reserve owned by the University of Florida and is part of the National Ecological Observatory Network (NEON). The reserve contains several iconic Florida habitats, such as sandhill, mesic hammock, and scrubby flatwoods. While plants and animals have been extensively studied at OSBS, the fungi remain poorly known. Fungal inventories are critical to increase knowledge of both fungal diversity and species ranges, and thus to provide foundational data for a wide array of applications in ecology and resource management. Here, we present the results of a nine-year effort to collect, preserve, and DNA barcode the macrofungi at OSBS. This effort generated >1200 vouchered specimens and 984 ITS rDNA sequences, representing more than 546 species. Our sampling was dominated by Basidiomycota and revealed a high diversity of symbiotic ectomycorrhizal fungi, particularly species of Amanita, Cortinarius, and Russula. Sampling curves and both Chao1 and Jacknife1 richness estimators suggest that our DNA barcoding efforts captured only about half of the macrofungi species and that a more complete inventory would detect 897–1177 macrofungi species at OSBS. Our sampling found more species of macrofungi at OSBS than the known number of vertebrate animal species at the reserve and our estimates also suggest that there are likely more macrofungi species than plant species at OSBS. This study is the first comprehensive macrofungi inventory within a NEON site and highlights the importance of long-term monitoring to provide novel data on fungal diversity, community structure, conservation, biogeography, and taxonomy.more » « lessFree, publicly-accessible full text available November 1, 2026
-
In this study we review recent collections and historical records of epigeous members of the Pezizales formerly placed in the large, heterogenous genus Peziza from temperate southern South America. Recent analyses using molecular phylogenetic methods allow placement of these species in several previously described genera in recognition of the heterogeneity of Peziza. We include species in nine genera, describe one new species (Peziza gamundiae sp. nov.), and propose one new combination (Phylloscypha nothofageti comb. nov.). We also demonstrate that Pustularia microspora is a synonym of the previously described taxon Peziza pseudosylvestris. Our purpose is to draw attention to these taxa in order to promote their collection and study in a modern framework.more » « less
-
Truffle fungi are esteemed for their aromatic qualities and are among the most widely cultivated edible ectomycorrhizal fungi. Here we document a successful method for establishing Tuber lyonii , the pecan truffle, on pecan ( Carya illinoinensis ) seedlings in a field setting. We assessed the impacts of soil fumigation and varying concentrations of truffle spore inoculum on the ectomycorrhizal fungal and the complete fungal communities as well as the colonization of T. lyonii on pecan roots at three nurseries in Georgia, United States. To identify fungal communities on pecan seedlings, we performed high-throughput amplicon sequencing of the fungal ITS1 rDNA region. Our 5-year long field experiment demonstrates that fumigation and inoculation together resulted in the highest persistence of T. lyonii on pecan roots. While fungal OTU numbers fluctuated over the years of our experiments, there was no statistical support to demonstrate diversification of communities when Shannon diversity metrics were used. However, we did find that older seedlings were less likely to be dominated by T. lyonii compared to younger ones, suggesting successional changes in the fungal community over time. This suggests that transplanting inoculated seedlings after 2 or 3 years post-inoculation is optimal for future truffle propagation efforts. Our results demonstrate that T. lyonii can be established in situ with methods that are compatible with current pecan nursery industry practices and that fungal communities on pecan seedlings vary depending on the experimental treatments used during planting. While the pecan truffle is not yet widely cultivated, our results provide insights for future large-scale cultivation of this and perhaps other Tuber species.more » « less
An official website of the United States government
