Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A long-standing question related to nova eruptions is how these eruptions might lead to dust formation, despite the ostensibly inhospitable environment for dust within the hot, irradiated ejecta. In the novae of systems such as the symbiotic binary RS Ophiuchi (RS Oph), ejecta from the white dwarf collide with pre-existing circumstellar material fed by the wind from the red-giant companion, offering a particularly clear view of some nova shocks and any associated dust production. In this work, we use the spectropolarimetric monitoring of the recurrent nova RS Oph starting two days after its eruption in August 2021 to show that: 1) dust was present in the RS Oph system as early as two days into the 2021 eruption; 2) the spatial distribution of this early dust was asymmetric, with components both aligned with and perpendicular to the orbital plane of the binary; 3) between two and nine days after the start of the eruption, this early dust was gradually destroyed; and 4) dust was again created, aligned roughly with the orbital plane of the binary more than 80 days after the start of the outburst, most likely as a result of shocks that arose as the ejecta interacted with circumbinary material concentrated in the orbital plane. The modeling of X-rays and very-high-energy (GeV and TeV) emission from RS Oph days to months into the 2021 eruption suggests that collisions between the ejecta and the circumbinary material may have led to shock formation in two distinct regions: the polar regions perpendicular to the orbital plane, where collimated outflows have been observed after prior eruptions, and a circumbinary torus in the orbital plane. The observations described here indicate that dust formed in approximately the same two regions, supporting the connection between shocks and dust in novae and revealing a very early onset of asymmetry. The spectropolarimetric signatures of RS Oph in the first week into the 2021 outburst indicate: 1) polarized flux across the Hαemission line and 2) the position angle orientation relative to the radio axis is similar to what is seen from the spectropolarimetric signatures of active galactic nuclei (AGNs).more » « less
-
ABSTRACT The optical spectra of novae are characterized by emission lines from the hydrogen Balmer series and either Fe ii or He/N, leading to their traditional classification into two spectral classes: ‘Fe ii’ and ‘He/N’. For decades, the origins of these spectral features were discussed in the literature in the contexts of different bodies of gas or changes in the opacity of the ejecta, particularly associated with studies by R. E. Williams and S. N. Shore. Here, we revisit these major studies with dedicated, modern data sets, covering the evolution of several novae from early rise to peak all the way to the nebular phase. Our data confirm previous suggestions in the literature that the ‘Fe ii’ and ‘He/N’ spectral classes are phases in the spectroscopic evolution of novae driven primarily by changes in the opacity, ionization, and density of the ejecta, and most if not all novae go through at least three spectroscopic phases as their eruptions evolve: an early He/N (phase 1; observed during the early rise to visible peak and characterized by P Cygni lines of He i and N ii/iii), then an Fe ii (phase 2; observed near visible peak and characterized by P Cygni lines of Fe ii and O i), and then a later He/N (phase 3; observed during the decline and characterized by emission lines of He i/ii, N ii/iii), before entering the nebular phase. This spectral evolution seems to be ubiquitous across novae, regardless of their speed class; however the duration of each of these phases differs based on the speed class of the nova.more » « less
-
Abstract We report on the detection and analysis of extended X-ray emission by the Chandra X-ray Observatory stemming from the 2006 eruption of the recurrent nova RS Oph. The extended emission was detected 1254 and 1927 days after the start of the 2006 eruption and is consistent with a bipolar flow oriented in the East–West direction of the sky with opening angles of approximately 70°. The length of both lobes appeared to expand from 1.″3 in 2009 to 2.″0 in 2011, suggesting a projected expansion rate of 1.1 ± 0.1 mas day −1 and an expansion velocity of 4600 km s −1 ( D /2.4 kpc) in the plane of the sky. This expansion rate is consistent with previous estimates from optical and radio observations of material in a similar orientation. The X-ray emission does not show any evidence of cooling between 2009 and 2011, consistent with free expansion of the material. This discovery suggests that some mechanism collimates ejecta away from the equatorial plane, and that after that material passes through the red giant wind, it expands freely into the cavity left by the 1985 eruption. We expect similar structures to arise from the latest eruption and to expand into the cavity shaped by the 2006 eruption.more » « less
-
ABSTRACT We present early spectral observations of the very slow Galactic nova Gaia22alz, over its gradual rise to peak brightness that lasted 180 d. During the first 50 d, when the nova was only 3–4 mag above its normal brightness, the spectra showed narrow (FWHM ≈ 400 km s−1) emission lines of H Balmer, He i, He ii, and C iv but no P Cygni absorption. A few weeks later, the high-excitation He ii and C iv lines disappeared, and P Cygni profiles of Balmer, He i, and eventually Fe ii lines emerged, yielding a spectrum typical of classical novae before peak. We propose that the early (first 50 d) spectra of Gaia22alz, particularly the emission lines with no P Cygni profiles, are produced in the white dwarf’s optically thin envelope or accretion disc, reprocessing ultraviolet and potentially X-ray emission from the white dwarf after a dramatic increase in the rate of thermonuclear reactions, during a phase known as the ‘early X-ray/UV flash’. If true, this would be one of the rare times that the optical signature of the early X-ray/UV flash has been detected. While this phase might last only a few hours in other novae and thus be easily missed, it was possible to detect in Gaia22alz due to its very slow and gradual rise and thanks to the efficiency of new all-sky surveys in detecting transients on their rise. We also consider alternative scenarios that could explain the early spectral features of Gaia22alz and its gradual rise.more » « less
-
Abstract There is a long-standing discrepancy between the observed Galactic classical nova rate of ∼10 yr −1 and the predicted rate from Galactic models of ∼30–50 yr −1 . One explanation for this discrepancy is that many novae are hidden by interstellar extinction, but the degree to which dust can obscure novae is poorly constrained. We use newly available all-sky three-dimensional dust maps to compare the brightness and spatial distribution of known novae to that predicted from relatively simple models in which novae trace Galactic stellar mass. We find that only half (53%) of the novae are expected to be easily detectable ( g ≲ 15) with current all-sky optical surveys such as the All-Sky Automated Survey for Supernovae (ASAS-SN). This fraction is much lower than previously estimated, showing that dust does substantially affect nova detection in the optical. By comparing complementary survey results from the ASAS-SN, OGLE-IV, and Palomar Gattini IR surveys using our modeling, we find a tentative Galactic nova rate of ∼30 yr −1 , though this could be as high as ∼40 yr −1 , depending on the assumed distribution of novae within the Galaxy. These preliminary estimates will be improved in future work through more sophisticated modeling of nova detection in ASAS-SN and other surveys.more » « less
-
Abstract We present the first estimate of the Galactic nova rate based on optical transient surveys covering the entire sky. Using data from the All-Sky Automated Survey for Supernovae (ASAS-SN) and Gaia—the only two all-sky surveys to report classical nova candidates—we find 39 confirmed Galactic novae and 7 additional unconfirmed candidates discovered from 2019 to 2021, yielding a nova discovery rate of ≈14 yr−1. Using accurate Galactic stellar mass models and three-dimensional dust maps and incorporating realistic nova light curves, we have built a sophisticated Galactic nova model to estimate the fraction of Galactic novae discovered by these surveys over this time period. The observing capabilities of each survey are distinct: the high cadence of ASAS-SN makes it sensitive to fast novae, while the broad observing filter and high spatial resolution of Gaia make it more sensitive to highly reddened novae across the entire Galactic plane and bulge. Despite these differences, we find that ASAS-SN and Gaia give consistent Galactic nova rates, with a final joint nova rate of 26 ± 5 yr−1. This inferred nova rate is substantially lower than found by many other recent studies. Critically assessing the systematic uncertainties in the Galactic nova rate, we argue that the role of faint, fast-fading novae has likely been overestimated, but that subtle details in the operation of transient alert pipelines can have large, sometimes unappreciated effects on transient recovery efficiency. Our predicted nova rate can be directly tested with forthcoming red/near-infrared transient surveys in the southern hemisphere.more » « less
-
Abstract We present a detailed study of the 2019 outburst of the cataclysmic variable V1047 Cen, which hosted a classical nova eruption in 2005. The peculiar outburst occurred 14 yr after the classical nova event and lasted for more than 400 days, reaching an amplitude of around 6 magnitudes in the optical. Early spectral follow-up revealed what could be a dwarf nova (accretion disk instability) outburst. However, the outburst duration, high-velocity (>2000 km s −1 ) features in the optical line profiles, luminous optical emission, and presence of prominent long-lasting radio emission together suggest a phenomenon more exotic and energetic than a dwarf nova outburst. The outburst amplitude, radiated energy, and spectral evolution are also not consistent with a classical nova eruption. There are similarities between V1047 Cen’s 2019 outburst and those of classical symbiotic stars, but pre-2005 images of the field of V1047 Cen indicate that the system likely hosts a dwarf companion, implying a typical cataclysmic variable system. Based on our multiwavelength observations, we suggest that the outburst may have started with a brightening of the disk due to enhanced mass transfer or disk instability, possibly leading to enhanced nuclear shell burning on the white dwarf, which was already experiencing some level of quasi-steady shell burning. This eventually led to the generation of a wind and/or bipolar, collimated outflows. The 2019 outburst of V1047 Cen appears to be unique, and nothing similar has been observed in a typical cataclysmic variable system before, hinting at a potentially new astrophysical phenomenon.more » « less
-
ABSTRACT Classical novae are shock-powered multiwavelength transients triggered by a thermonuclear runaway on an accreting white dwarf. V1674 Her is the fastest nova ever recorded (time to declined by two magnitudes is t2 = 1.1 d) that challenges our understanding of shock formation in novae. We investigate the physical mechanisms behind nova emission from GeV γ-rays to cm-band radio using coordinated Fermi-LAT, NuSTAR, Swift, and VLA observations supported by optical photometry. Fermi-LAT detected short-lived (18 h) 0.1–100 GeV emission from V1674 Her that appeared 6 h after the eruption began; this was at a level of (1.6 ± 0.4) × 10−6 photons cm−2 s−1. Eleven days later, simultaneous NuSTAR and Swift X-ray observations revealed optically thin thermal plasma shock-heated to kTshock = 4 keV. The lack of a detectable 6.7 keV Fe Kα emission suggests super-solar CNO abundances. The radio emission from V1674 Her was consistent with thermal emission at early times and synchrotron at late times. The radio spectrum steeply rising with frequency may be a result of either free-free absorption of synchrotron and thermal emission by unshocked outer regions of the nova shell or the Razin–Tsytovich effect attenuating synchrotron emission in dense plasma. The development of the shock inside the ejecta is unaffected by the extraordinarily rapid evolution and the intermediate polar host of this nova.more » « less