skip to main content

Search for: All records

Creators/Authors contains: "Mukamel, Shaul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a novel approach to transient Raman spectroscopy, which combines stochastic probe pulses and a covariance-based detection to measure stimulated Raman signals in alpha-quartz. A coherent broadband pump is used to simultaneously impulsively excite a range of different phonon modes, and the phase, amplitude, and energy of each mode are independently recovered as a function of the pump–probe delay by a noisy-probe and covariance-based analysis. Our experimental results and the associated theoretical description demonstrate the feasibility of 2D-Raman experiments based on the stochastic-probe schemes, with new capabilities not available in equivalent mean-value-based 2D-Raman techniques. This work unlocks the gate for nonlinear spectroscopies to capitalize on the information hidden within the noise and overlooked by a mean-value analysis.
    Free, publicly-accessible full text available December 1, 2023
  2. Free, publicly-accessible full text available August 30, 2023
  3. Free, publicly-accessible full text available June 15, 2023
  4. Free, publicly-accessible full text available June 1, 2023
  5. Consolidation of ultrafast optics in electron spectroscopies based on free electron energy exchange with matter has matured significantly over the past two decades, offering an attractive toolbox for the exploration of elementary events with unprecedented spatial and temporal resolution. Here, we propose a technique for monitoring electronic and nuclear molecular dynamics that is based on self-heterodyne coherent beating of a broadband pulse rather than incoherent population transport by a narrowband pulse. This exploits the strong exchange of coherence between the free electron and the sample. An optical pulse initiates matter dynamics, which is followed by inelastic scattering of a delayed high-energy broadband single-electron beam. The interacting and noninteracting beams then interfere to produce a heterodyne-detected signal, which reveals snapshots of the sample charge density by scanning a variable delay T . The spectral interference of the electron probe introduces high-contrast phase information, which makes it possible to record the electronic coherence in the sample. Quantum dynamical simulations of the ultrafast nonradiative conical intersection passage in uracil reveal a strong electronic beating signal imprinted onto the zero-loss peak of the electronic probe in a background-free manner.
    Free, publicly-accessible full text available May 31, 2023
  6. Time-resolved photoelectron spectroscopy (TRPES) signals that monitor the relaxation of the RNA base uracil upon optical excitation are simulated. Distinguishable signatures of coherence dynamics at conical intersections are identified, with temporal and spectral resolutions determined by the duration of the ionizing probe pulse. The frequency resolution of the technique, either directly provided by the signal or retrieved at the data-processing stage, can magnify the contribution from molecular coherences, enabling the extraction of most valuable information about the nonadiabatic molecular dynamics. The predicted coherence signatures in TRPES could be experimentally observed with existing ultrashort pulses from high-order harmonic generation or free-electron lasers.
    Free, publicly-accessible full text available March 15, 2023
  7. Free, publicly-accessible full text available May 10, 2023
  8. By placing Mg-porphyrin molecules in a chiral optical cavity, time reversal symmetry is broken, and polariton ring currents can be generated with linearly polarized light, resulting in a circular dichroism signal. Since the electronic state degeneracy in the molecule is lifted by the formation of chiral polaritons, this signal is one order of magnitude stronger than the bare molecule signal induced by circularly polarized light. Enantiomer-selective photochemical processes in chiral optical cavities is an intriguing future possibility.
    Free, publicly-accessible full text available January 26, 2023
  9. Free, publicly-accessible full text available January 11, 2023
  10. Abstract Optical interferometry has been a long-standing setup for characterization of quantum states of light. Both linear and the nonlinear interferences can provide information regarding the light statistics and underlying detail of the light-matter interactions. Here we demonstrate how interferometric detection of nonlinear spectroscopic signals may be used to improve the measurement accuracy of matter susceptibilities. Light-matter interactions change the photon statistics of quantum light, which are encoded in the field correlation functions. Application is made to the Hong-Ou-Mandel two-photon interferometer that reveals entanglement-enhanced resolution that can be achieved with existing optical technology.