Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Limited access to food stores is often linked to higher health risks and lower community resilience. Socially vulnerable populations experience persistent disparities in equitable food store access. However, little research has been done to examine how people's access to food stores is affected by natural disasters. Previous studies mainly focus on examining potential access using the travel distance to the nearest food store, which often falls short of capturing the actual access of people. Therefore, to fill this gap, this paper incorporates human mobility patterns into the measure of actual access, leveraging large‐scale mobile phone data. Specifically, we propose a novel enhanced two‐step floating catchment area method with travel preferences (E2SFCA‐TP) to measure accessibility, which extends the traditional E2SFCA model by integrating actual human mobility behaviors. We then analyze people's actual access to grocery and convenience stores across both space and time under the devastating winter storm Uri in Harris County, Texas. Our results highlight the value of using human mobility patterns to better reflect people's actual access behaviors. The proposed E2SFCA‐TP measure is more capable of capturing mobility variations in people's access, compared with the traditional E2SFCA measure. This paper provides insights into food store access across space and time, which could aid decision making in resource allocation to enhance accessibility and mitigate the risk of food insecurity in underserved areas.more » « lessFree, publicly-accessible full text available July 29, 2025
-
Abstract This paper proposes a novel simulation‐based hybrid approach coupled with time‐dependent Bayesian network analysis to model multi‐infrastructure vulnerability over time under physical, spatial, and informational uncertainties while considering cascading failures within and across infrastructure networks. Unlike existing studies that unrealistically assume that infrastructure managers have full knowledge of all the infrastructure systems, the proposed approach considers a realistic scenario where complete information about the infrastructure network topology or the supply–demand flow characteristics is not available while estimating multi‐infrastructure vulnerability. A novel heuristic algorithm is proposed to construct a dynamic fault tree to abstract the network topology of any infrastructure. In addition, to account for the unavailability of exact supply–demand flow characteristics, the proposed approach constructs the interdependence links across infrastructure network systems using different simulated parameters considering the physical, logical, and geographical dependencies. Finally, using parameters for geographical proximity, infrastructure managers' risk perception, and the relative importance of one infrastructure on another, the multi‐infrastructure vulnerability over time is estimated. Results from the numerical experiment show that for an opportunistic risk perception, the interdependencies attribute to redundancies, and with an increase in redundancy, the vulnerability decreases. On the other hand, from a conservative risk perspective, the interdependencies attribute to deficiencies/liabilities, and the vulnerability increases with an increase in the number of such interdependencies.more » « less