skip to main content

Search for: All records

Creators/Authors contains: "Mukherjee, T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mikołaj Boja´nczyk, Emanuela Merelli (Ed.)
    We initiate a systematic study of algorithms that are both differentially-private and run in sublinear time for several problems in which the goal is to estimate natural graph parameters. Our main result is a differentially-private $(1+\rho)$-approximation algorithm for the problem of computing the average degree of a graph, for every $\rho>0$. The running time of the algorithm is roughly the same (for sparse graphs) as its non-private version proposed by Goldreich and Ron (Sublinear Algorithms, 2005). We also obtain the first differentially-private sublinear-time approximation algorithms for the maximum matching size and the minimum vertex cover size of a graph. Anmore »overarching technique we employ is the notion of \emph{coupled global sensitivity} of randomized algorithms. Related variants of this notion of sensitivity have been used in the literature in ad-hoc ways. Here we formalize the notion and develop it as a unifying framework for privacy analysis of randomized approximation algorithms.« less
    Free, publicly-accessible full text available January 1, 2023
  2. Abstract The Surface Enhancement of the IceTop air-shower array will include the addition of radio antennas and scintillator panels, co-located with the existing ice-Cherenkov tanks and covering an area of about 1 km 2 . Together, these will increase the sensitivity of the IceCube Neutrino Observatory to the electromagnetic and muonic components of cosmic-ray-induced air showers at the South Pole. The inclusion of the radio technique necessitates an expanded set of simulation and analysis tools to explore the radio-frequency emission from air showers in the 70 MHz to 350 MHz band. In this paper we describe the software modules thatmore »have been developed to work with time- and frequency-domain information within IceCube's existing software framework, IceTray, which is used by the entire IceCube collaboration. The software includes a method by which air-shower simulation, generated using CoREAS, can be reused via waveform interpolation, thus overcoming a significant computational hurdle in the field.« less
    Free, publicly-accessible full text available June 1, 2023