Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 15, 2025
-
Abstract Electron tomography holds great promise as a tool for investigating the 3D morphologies and internal structures of metal‐organic framework‐based protein biocomposites (protein@MOFs). Understanding the 3D spatial arrangement of proteins within protein@MOFs is paramount for developing synthetic methods to control their spatial localization and distribution patterns within the biocomposite crystals. In this study, the naturally occurring iron oxide mineral core of the protein horse spleen ferritin (Fn) is leveraged as a contrast agent to directly observe individual proteins once encapsulated into MOFs by electron microscopy techniques. This methodology couples scanning electron microscopy, transmission electron microscopy, and electron tomography to garner detailed 2D and 3D structural interpretations of where proteins spatially lie in Fn@MOF crystals, addressing the significant gaps in understanding how synthetic conditions relate to overall protein spatial localization and aggregation. These findings collectively reveal that adjusting the ligand‐to‐metal ratios, protein concentration, and the use of denaturing agents alters how proteins are arranged, localized, and aggregated within MOF crystals.more » « less
-
Abstract Patterned semiconductors are essential for the fabrication of nearly all electronic devices. Over the last two decades, semiconducting polymers (SPs) have received enormous attention due to their potential for creating low‐cost flexible electronic devices, while development of scalable patterning methods capable of producing sub‐μm feature sizes has lagged. A novel method for patterning SPs termed Projection Photothermal Lithography (PPL) is presented. A lab scale PPL microscope is built and it is demonstrated that rapid (≈4 cm2h−1) and large single exposure area (≈0.69 mm2) sub‐μm patterns can be obtained optically. Polymer domains are selectively removed via a photo‐induced temperature gradient that enables dissolution. It is hypothesized that commercial‐scale patterning with a throughput of≈5 m2h−1and resolution of<1μm could be realized through optimization of optical components.more » « less