skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Munga, John_Ngugi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We explore a possibility to control magnetic dipole emission with plasmonic cavities, placing Eu3+emitters inside profile-modulated metal-dielectric-metal structures. Significant variations in the branching ratio of the magnetic and electric dipole transitions are observed as the function of the thickness of the intermediate layer. The experimental results are confirmed with numerical simulations which account for cavity and gap plasmon resonances and predict modifications in the spontaneous emission spectrum as the function of the gap size and a strong directionality of the emission for small thicknesses of the intermediate layer. The implications of having a competition between electric and magnetic dipole relaxation channels in Eu3+are discussed. 
    more » « less